Dev.Op
Yollow ๐Ÿ“š
Dev.Op
์ „์ฒด ๋ฐฉ๋ฌธ์ž
์˜ค๋Š˜
์–ด์ œ
  • ๋ถ„๋ฅ˜ ์ „์ฒด๋ณด๊ธฐ (701)
    • ์œ ์ตํ•˜์…จ๋‹ค๋ฉด ๊ด‘๊ณ  ํ•œ๋ฒˆ๋งŒ ํด๋ฆญ ๋ถ€ํƒ๋“œ๋ฆด๊ฒŒ์š”~ (0)
    • ---------------------------.. (0)
    • Stock (1)
      • ์Šˆํผ๋งˆ์ดํฌ๋กœ์ปดํ“จํ„ฐ (2)
    • ๐Ÿง์ „๊ธฐ์ฐจ (72)
      • ๐Ÿ„lg์—๋„ˆ์ง€์†”๋ฃจ์…˜ (0)
      • ๐ŸŠํ˜„๋Œ€์ž๋™์ฐจ (0)
    • ๐Ÿ—๏ธ์†Œํ”„ํŠธ์›จ์–ด (243)
      • ๐Ÿ’ปpython (85)
      • โž•C & C++ (1)
      • โ˜•๏ธTableau (32)
      • ๐Ÿ‘‹SQL & MySQL (20)
      • ๐ŸฌHTML & CSS (14)
      • ๐Ÿ“—JavaScript (31)
      • ๐Ÿ“˜Pspice & Excel (2)
      • ๐Ÿ“•Matlab & COMSOL & CATIA (6)
      • ๐Ÿ“™java & Servlete & JSP (29)
      • ๐Ÿ““Raspberry PI 4 (5)
      • ๐Ÿ”จAnsys (2)
      • DJango (0)
      • Flutter (3)
      • Typescript (0)
      • ๐Ÿ†Vue (5)
      • ๐Ÿ‹Docker (1)
    • ๐Ÿ“‹์ฑ„์šฉ๊ณต๊ณ  (0)
    • ๐Ÿ“WEB & ML & DL ํ”„๋กœ์ ํŠธ (27)
      • ๐ŸŒต2์ฐจ ํ”„๋กœ์ ํŠธ(LG) (9)
    • ๐Ÿงฉ์ผ์ƒ (89)
      • ๐ŸŒค์ฝ”๋”ฉ ๊ณต๋ถ€ ์ผ์ง€ (1)
      • ๐Ÿšด์ž์ „๊ฑฐ (5)
      • ๐Ÿ“ฐํ…Œํฌ (20)
      • ๐ŸฆFood & Cafe (5)
      • ๐Ÿ’‰์˜์–ด ๋„์ ์ด๊ธฐ (5)
      • โšก๋ฐœ์ „์†Œ (6)
      • ๐Ÿ“š๋…์„œ (1)
      • ๐Ÿ›ซ์—ฌํ–‰ (2)
      • ๐Ÿ“ˆ๋ธ”๋กœ๊ทธ๋งˆ์ผ€ํŒ… (6)
    • ๐ŸŒ๊ธˆ์œต (37)
    • ๐ŸŽจ์ทจ์—…End (16)
    • ๐Ÿ‘‹์ž๊ฒฉ์ฆ (150)
      • ๐Ÿ™ˆSQLD๊ฐœ๋ฐœ์ž (12)
      • ๐Ÿ”Œ์ „๊ธฐ๊ธฐ์‚ฌ (116)
      • ๐Ÿข์ •๋ณด์ฒ˜๋ฆฌ๊ธฐ์‚ฌ (7)
      • ๐ŸŒŽADsP(๋ฐ์ดํ„ฐ๋ถ„์„์ค€์ „๋ฌธ๊ฐ€) (10)
      • ๐Ÿš™1์ข… ๋Œ€ํ˜• ์šด์ „ ๋ฉดํ—ˆ (1)
      • โญTableau Desktop Specialist (2)
    • ๐Ÿฅ‡๊ณต๋Œ€์ด๊ฑฐ์ €๊ฒƒ(๋ง‰ํ•™๊ธฐ) (24)
      • ๐Ÿ“๊ณตํ•™์ˆ˜ํ•™ 2 (1)
      • ๐Ÿบ๋งˆ์ดํฌ๋กœํ”„๋กœ์„ธ์„œ์‹ค์Šต (4)
      • ๐ŸŒCAE (10)
      • โœˆ๏ธ์ž๋™์ฐจ๊ณตํ•™์‹คํ—˜2 (0)
      • ๐Ÿšข์œ ์ฒด์—ญํ•™ (6)
      • ๐Ÿš—ํ˜„๋Œ€์ฐจ H-๋ชจ๋นŒ๋ฆฌํ‹ฐ ํด๋ž˜์Šค 1๊ธฐ (3)

๋ธ”๋กœ๊ทธ ๋ฉ”๋‰ด

    ๊ณต์ง€์‚ฌํ•ญ

    • Vue, Typescript, React, Tableau,โ‹ฏ
    • ์ง„์ธ์‚ฌ๋Œ€์ฒœ๋ช…(็›กไบบไบ‹ๅพ…ๅคฉๅ‘ฝ)

    ์ธ๊ธฐ ๊ธ€

    ํƒœ๊ทธ

    • ipad dual monitor
    • ์ง๋ ฌ๋ฆฌ์•กํ„ฐ
    • rdfr
    • ์—…๋น„ํŠธ
    • ๋น…๋ฐ์ดํ„ฐ
    • ์ „๊ธฐ์ฐจ
    • vue btn
    • Python
    • ์œ ์ฒด์—ญํ•™
    • ADsP
    • html
    • ์ž๋ฐ”
    • fluid mechanics
    • ๋””์นด๋ฅด๊ณ 
    • ์‚ผ์„ฑ์ „์ž
    • ๋น…๋ฐ์ดํ„ฐ๋ถ„์„์ค€์ „๋ฌธ๊ฐ€
    • LG์—๋„ˆ์ง€์†”๋ฃจ์…˜
    • ์•Œ๊ณ ๋ฆฌ์ฆ˜
    • css
    • ์—”๋น„๋””์•„
    • ๋ถ€๋“ฑ๋ฅ 
    • ์•„์ด์˜ค๋‹‰5
    • lgํ™”ํ•™
    • ์ „๊ธฐ์ฐจ ๋ณด์กฐ๊ธˆ 2021
    • ๋ธŒ๋ฃจํŠธํฌ์Šค
    • SMCI
    • ํ…Œ์Šฌ๋ผ
    • ์—”์†”
    • ๋ฐฑ์ค€
    • ์—๋””์Šจev

    ์ตœ๊ทผ ๋Œ“๊ธ€

    ์ตœ๊ทผ ๊ธ€

    ํ‹ฐ์Šคํ† ๋ฆฌ

    hELLO ยท Designed By ์ •์ƒ์šฐ.
    Dev.Op

    Yollow ๐Ÿ“š

    ๋Œ€์„  ํ…Œ๋งˆ์ฃผ์™€ ๊ด€๋ จ ํ›„๋ณด ๋‰ด์Šค ๋นˆ๋„์ˆ˜์— ๋”ฐ๋ฅธ ์ฃผ์‹ ๊ฐ€๊ฒฉ์˜ ๋ณ€ํ™” ์˜ˆ์ธก
    ๐Ÿ“WEB & ML & DL ํ”„๋กœ์ ํŠธ

    ๋Œ€์„  ํ…Œ๋งˆ์ฃผ์™€ ๊ด€๋ จ ํ›„๋ณด ๋‰ด์Šค ๋นˆ๋„์ˆ˜์— ๋”ฐ๋ฅธ ์ฃผ์‹ ๊ฐ€๊ฒฉ์˜ ๋ณ€ํ™” ์˜ˆ์ธก

    2021. 10. 20. 14:07
    ๋ฐ˜์‘ํ˜•

    ์ƒ๊ด€๊ด€๊ณ„

    import pandas as pd
    import matplotlib.pyplot as plt
    from pandas_datareader import data as pdr
    import numpy as np
    
    # plt ์Šคํƒ€์ผ ์ง€์ •
    plt.style.use('seaborn-colorblind')
    
    #์ฃผ์‹ ๋ฐ์ดํ„ฐ ๋ถˆ๋Ÿฌ์˜ค๊ธฐ
    #index_col์€ index๋กœ ์‚ฌ์šฉํ•  column์„ ์„ ํƒํ•  ๋•Œ ์‚ฌ์šฉ
    #parse_dates=True๋Š” ๋‚ ์งœ๋ฌธ์ž์—ด์„ ์ž๋™์œผ๋กœ
    #DatetimeIndex๋กœ ๋ณ€ํ™˜์‹œ์ผœ์ฃผ๋Š” ์˜ต์…˜
    
    #๋ถˆ๋Ÿฌ์˜ค๊ธฐ ๋ฐฉ์‹ 2 
    filename1 = '/content/drive/My Drive/project_news/no1.csv'
    
    data1 = pd.read_csv(filename1,encoding='cp949')
    data1['datetime'] = data1['date'].apply(lambda x:pd.to_datetime(str(x),format='%Y-%m-%d'))
    
    
    # ๊ฒฐ์ธก์น˜, ๋ฐ ์ž˜๋ชป๋œ ๋‚ ์งœ ํ˜•ํƒœ ๋ฐœ๊ฒฌ
    data1[data1['date'].str.contains("๊ณต์ˆ˜์ฒ˜")]
    
    # ํ–‰ ์‚ญ์ œ
    data1 = data1.drop([8423])
    
    # ๋‹ค์‹œ ๋‚ ์งœํ˜•ํƒœ๋กœ ์ „ํ™˜, ์™€ใ……;; ์„ฑ๊ณต
    data1['datetime'] = data1['date'].apply(lambda x:pd.to_datetime(str(x),format='%Y-%m-%d'))
    
    # ์ž„์˜์˜ ๊ฐ’ 1 ๋„ฃ์–ด์„œ ๊ณ„์‚ฐ์šฉ์ด
    data1['all_news_num'] = 1
    
    #index๋ฅผ datetime index๋กœ ์„ค์ •ํ•˜๊ธฐ
    data1.set_index(data1['datetime'], inplace=True)
    
    #์“ธ๋ชจ์—†๋Š” ์—ด ์ œ๊ฑฐ(ํ–‰0 ์—ด1)
    data1 = data1.drop('datetime',1)
    
    #ํ™•์ธ
    data1.head()
    
    #resampling
    daily_data1 = data1.resample('1D')
    
    #์ผ๋ณ„๋กœ ๊ธฐ์ค€ ์žฌ์ •๋ ฌํ•˜๊ธฐ
    series1 = pd.Series(data1['all_news_num'], index=data1.index)
    series1
    
    # resampling ํ•˜๊ธฐ ์œ„ํ•œ ์ตœ์ข…
    daily_stock1_news_sum = series1.resample('1D').sum()
    daily_stock1_news_sum
    
    # ์ฃผ์‹ 3์ค‘๋ง ๊ทธ๋ž˜ํ”„ ๋ณด์ด๊ธฐ
    
    stock = '/content/drive/My Drive/project_news/stock/comp_065500.csv'
    
    stock_df = pd.read_csv(stock, index_col='date', parse_dates=True)
    # ์ข…๊ฐ€ + ๊ฑฐ๋ž˜๋Ÿ‰ ๊ฒน์ณ์„œ ํ‘œํ˜„ํ•˜๊ธฐ
    
    
    plt.figure(figsize=(15,12), facecolor='beige')
    top_axes = plt.subplot2grid((6,4),(0,0),rowspan=3,colspan=4)
    top_axes.title.set_text('Stock Price')
    top_axes.get_xaxis().set_visible(False)
    middle_axes = plt.subplot2grid((6,4),(3,0),rowspan=2,colspan=4)
    middle_axes.title.set_text('News')
    middle_axes.get_xaxis().set_visible(False)
    bottom_axes = plt.subplot2grid((6,4),(5,0),rowspan=1,colspan=4)
    bottom_axes.title.set_text('Trading Volume')
    
    #๊ฑฐ๋ž˜๋Ÿ‰ ๊ฐ’์œผ๋กœ์„œ ํฐ ๊ฐ’์ด ๋ฐœ์ƒํ•  ๋•Œ ๊ทธ ๊ฐ’์„ ์˜ค์ผ๋Ÿฌ ์ƒ์ˆ˜(e)์˜ ์ง€์ˆ˜ ํ˜•ํƒœ๋กœ ํ‘œํ˜„๋˜์ง€ ์•Š๊ฒŒํ•จ
    bottom_axes.get_yaxis().get_major_formatter().set_scientific(False)
    
    top_axes.plot(stock_df['close'], label = 'Close')
    middle_axes.plot(daily_stock1_news_sum, label = "News", color = 'chocolate')
    bottom_axes.plot(stock_df['trading_volume'], label = 'Volume',color = 'blueviolet')
    
    
    
    #๋‰ด์Šค ๋นˆ๋„์ˆ˜์™€ ์ฃผ์‹ ๋ณ€๋™์„ฑ ์ƒ๊ด€๋ถ„์„ ์‹œํ–‰
    import seaborn as sns
    #var_corr1 = stock_df['trading_volume']
    stock_df['trading_volume']
    
    daily_stock1_news_sum
    
    #merge ์ƒ๊ด€ ๊ด€๊ณ„ ๋ถ„์„ํ•˜๊ธฐ ์œ„ํ•ด, ๊ฑฐ๋ž˜๋Ÿ‰+์ผ๋ณ„๋‰ด์Šค
    df_left = stock_df['trading_volume']
    df_right = daily_stock1_news_sum
    
    # resample์„ ํ†ตํ•œ ์›”๋ณ„ ๊ธฐ์ค€์œผ๋กœ ์„ธํŒ… ๋‹ค์‹œํ•˜๊ธฐ
    df_result1_month = df_result1.resample('M').sum()
    df_result1_month
    
    plt.figure(figsize=(12,10), facecolor='beige')
    top_axes = plt.subplot2grid((4,4),(0,0),rowspan=3,colspan=4)
    top_axes.title.set_text('Stock Price')
    top_axes.get_xaxis().set_visible(False)
    
    bottom_axes = plt.subplot2grid((4,4),(3,0),rowspan=1,colspan=4)
    bottom_axes.title.set_text('Trading Volume')
    
    #๊ฑฐ๋ž˜๋Ÿ‰ ๊ฐ’์œผ๋กœ์„œ ํฐ ๊ฐ’์ด ๋ฐœ์ƒํ•  ๋•Œ ๊ทธ ๊ฐ’์„ ์˜ค์ผ๋Ÿฌ ์ƒ์ˆ˜(e)์˜ ์ง€์ˆ˜ ํ˜•ํƒœ๋กœ ํ‘œํ˜„๋˜์ง€ ์•Š๊ฒŒํ•จ
    bottom_axes.get_yaxis().get_major_formatter().set_scientific(False)
    
    top_axes.plot(df_result1_month['trading_volume'])
    bottom_axes.plot(df_result1_month['all_news_num'],color = 'blueviolet')
    plt.show()
    
    
    df_result1 = pd.merge(df_left,df_right,left_index=True,right_index=True,how='left')
    #๊ฒฐ์ธก์น˜ ์ œ๊ฑฐํ•˜๊ธฐ(ํ–‰:0)
    df_result1 = df_result1.dropna(axis=0); df_result1
    
    stock = '/content/drive/My Drive/project_news/stock/comp_065500.csv'
    stock_df = pd.read_csv(stock, index_col='date', parse_dates=True)
    
    
    plt.figure(figsize=(12,10), facecolor='beige')
    top_axes = plt.subplot2grid((4,4),(0,0),rowspan=3,colspan=4)
    top_axes.title.set_text('Stock Price')
    top_axes.get_xaxis().set_visible(False)
    
    bottom_axes = plt.subplot2grid((4,4),(3,0),rowspan=1,colspan=4)
    bottom_axes.title.set_text('Trading Volume')
    
    #๊ฑฐ๋ž˜๋Ÿ‰ ๊ฐ’์œผ๋กœ์„œ ํฐ ๊ฐ’์ด ๋ฐœ์ƒํ•  ๋•Œ ๊ทธ ๊ฐ’์„ ์˜ค์ผ๋Ÿฌ ์ƒ์ˆ˜(e)์˜ ์ง€์ˆ˜ ํ˜•ํƒœ๋กœ ํ‘œํ˜„๋˜์ง€ ์•Š๊ฒŒํ•จ
    bottom_axes.get_yaxis().get_major_formatter().set_scientific(False)
    
    top_axes.plot(df_result1_month['trading_volume'])
    bottom_axes.plot(df_result1_month['all_news_num'],color = 'blueviolet')
    plt.show()
    
    #๋‰ด์Šค ๋นˆ๋„์ˆ˜์™€ ์ฃผ์‹ ๋ณ€๋™์„ฑ ์ƒ๊ด€๋ถ„์„ ์‹œํ–‰
    var_corr1 = df_result1_month[['trading_volume','all_news_num']].corr()
    sns.heatmap(var_corr1,annot=True)
    
    #ํ”ผ์–ด์Šจ ์ƒ๊ด€๊ณ„์ˆ˜ ๊ตฌํ•˜๊ธฐ, ์Šคํ”ผ์–ด๋งŒ ์ƒ๊ด€๊ณ„์ˆ˜ ๊ตฌํ•˜๊ธฐ
    from scipy import stats
    print(stats.pearsonr(df_result1_month['trading_volume'],df_result1_month['all_news_num']))
    print(stats.spearmanr(df_result1_month['trading_volume'],df_result1_month['all_news_num']))

     

     

    ์ •์น˜ ํ…Œ๋งˆ์ฃผ์™€ ๋Œ€์„  ํ›„๋ณด ๊ด€๋ จ ๋‰ด์Šค๊ฐ„ ์ƒ๊ด€๊ด€๊ณ„๋ฅผ ์‹œ๊ฐํ™”ํ•œ ๊ทธ๋ž˜ํ”„์ž…๋‹ˆ๋‹ค.

     

    ์‹œ๊ฐํ™”๋ฅผ ๋‹ค์–‘ํ•˜๊ฒŒ ์ง„ํ–‰ํ–ˆ๋Š”๋ฐ, ์ด๋ฒˆ ์ฝ”๋“œ๋Š” ๊ทธ๋ž˜ํ”„๋ฅผ ๋ถ„์„ํ•˜๋Š”๋ฐ ์‚ฌ์šฉํ–ˆ๋˜ ์ฝ”๋“œ์˜ ์ผ๋ถ€์ž…๋‹ˆ๋‹ค.

     

    ๋ฐ‘์—๋Š” ๊ฐ ์ผ์ž๋ณ„ ๊ด€๋ จ ๋Œ€์„  ํ›„๋ณด ์ด์žฌ๋ช…์„ ์–ธ๊ธ‰ํ•œ ๋‰ด์Šค์˜ ๋นˆ๋„์ˆ˜์ด๋ฉฐ, ์œ„์—๋Š” ํŠน์ • ๋Œ€์„  ํ›„๋ณด ๊ด€๋ จ ์ฃผ์‹์˜ ๊ทธ๋ž˜ํ”„์ž…๋‹ˆ๋‹ค. ๊ฐ ๋Œ€์„ ์ฃผ์ž๋ณ„, ์ •์น˜ ํ…Œ๋งˆ์ฃผ๋กœ ๋ถ„๋ฅ˜๋œ ํšŒ์‚ฌ์˜ ๋‰ด์Šค ๋นˆ๋„์ˆ˜์™€ ๊ฐ€๊ฒฉ์˜ ์ถ”์ด ๊ณก์„ ์„ ๋ถ„์„ํ•˜์˜€์Šต๋‹ˆ๋‹ค.

     

    ์ •์น˜ ํ…Œ๋งˆ์ฃผ / ๋น…๋ฐ์ดํ„ฐ ๋ถ„์„/ ํŒŒ์ด์„  ์‹œ๊ฐํ™”

    ๋ฐ˜์‘ํ˜•

    '๐Ÿ“WEB & ML & DL ํ”„๋กœ์ ํŠธ' ์นดํ…Œ๊ณ ๋ฆฌ์˜ ๋‹ค๋ฅธ ๊ธ€

    ๊ฐœ๋ฐœ์ž๋กœ์„œ ํฌํŠธํด๋ฆฌ์˜ค ์ž‘์„ฑํ•˜๋Š” ๋ฐฉ๋ฒ•  (0) 2021.10.22
    HTML get์œผ๋กœ ๋ณด์—ฌ์ค˜์•ผํ•  ๋Œ€์„  ํ…Œ๋งˆ์ฃผ ํšŒ์‚ฌ ์ •๋ณด ์˜ˆ์‹œ  (0) 2021.10.21
    ์ฝ”๋”ฉ ์ฑ… ๊ต์žฌ ์ถ”์ฒœ(feat.์ž…๋ฌธ์ž/๋น…๋ฐ์ดํ„ฐ/db/sql)  (0) 2021.10.04
    ๊นƒ ํ™œ์šฉํ•˜๋Š” ๋ฐฉ๋ฒ•  (0) 2021.10.02
    ํ…œํ”Œ๋ฆฟ ๋ฌด๋ฃŒ๋กœ ์‚ฌ์šฉํ•˜๋Š” ๊ณณ  (0) 2021.09.30
      '๐Ÿ“WEB & ML & DL ํ”„๋กœ์ ํŠธ' ์นดํ…Œ๊ณ ๋ฆฌ์˜ ๋‹ค๋ฅธ ๊ธ€
      • ๊ฐœ๋ฐœ์ž๋กœ์„œ ํฌํŠธํด๋ฆฌ์˜ค ์ž‘์„ฑํ•˜๋Š” ๋ฐฉ๋ฒ•
      • HTML get์œผ๋กœ ๋ณด์—ฌ์ค˜์•ผํ•  ๋Œ€์„  ํ…Œ๋งˆ์ฃผ ํšŒ์‚ฌ ์ •๋ณด ์˜ˆ์‹œ
      • ์ฝ”๋”ฉ ์ฑ… ๊ต์žฌ ์ถ”์ฒœ(feat.์ž…๋ฌธ์ž/๋น…๋ฐ์ดํ„ฐ/db/sql)
      • ๊นƒ ํ™œ์šฉํ•˜๋Š” ๋ฐฉ๋ฒ•
      Dev.Op
      Dev.Op
      Interest: CS, Drive

      ํ‹ฐ์Šคํ† ๋ฆฌํˆด๋ฐ”