Dev.Op
Yollow ๐Ÿ“š
Dev.Op
์ „์ฒด ๋ฐฉ๋ฌธ์ž
์˜ค๋Š˜
์–ด์ œ
  • ๋ถ„๋ฅ˜ ์ „์ฒด๋ณด๊ธฐ (701)
    • ์œ ์ตํ•˜์…จ๋‹ค๋ฉด ๊ด‘๊ณ  ํ•œ๋ฒˆ๋งŒ ํด๋ฆญ ๋ถ€ํƒ๋“œ๋ฆด๊ฒŒ์š”~ (0)
    • ---------------------------.. (0)
    • Stock (1)
      • ์Šˆํผ๋งˆ์ดํฌ๋กœ์ปดํ“จํ„ฐ (2)
    • ๐Ÿง์ „๊ธฐ์ฐจ (72)
      • ๐Ÿ„lg์—๋„ˆ์ง€์†”๋ฃจ์…˜ (0)
      • ๐ŸŠํ˜„๋Œ€์ž๋™์ฐจ (0)
    • ๐Ÿ—๏ธ์†Œํ”„ํŠธ์›จ์–ด (243)
      • ๐Ÿ’ปpython (85)
      • โž•C & C++ (1)
      • โ˜•๏ธTableau (32)
      • ๐Ÿ‘‹SQL & MySQL (20)
      • ๐ŸฌHTML & CSS (14)
      • ๐Ÿ“—JavaScript (31)
      • ๐Ÿ“˜Pspice & Excel (2)
      • ๐Ÿ“•Matlab & COMSOL & CATIA (6)
      • ๐Ÿ“™java & Servlete & JSP (29)
      • ๐Ÿ““Raspberry PI 4 (5)
      • ๐Ÿ”จAnsys (2)
      • DJango (0)
      • Flutter (3)
      • Typescript (0)
      • ๐Ÿ†Vue (5)
      • ๐Ÿ‹Docker (1)
    • ๐Ÿ“‹์ฑ„์šฉ๊ณต๊ณ  (0)
    • ๐Ÿ“WEB & ML & DL ํ”„๋กœ์ ํŠธ (27)
      • ๐ŸŒต2์ฐจ ํ”„๋กœ์ ํŠธ(LG) (9)
    • ๐Ÿงฉ์ผ์ƒ (89)
      • ๐ŸŒค์ฝ”๋”ฉ ๊ณต๋ถ€ ์ผ์ง€ (1)
      • ๐Ÿšด์ž์ „๊ฑฐ (5)
      • ๐Ÿ“ฐํ…Œํฌ (20)
      • ๐ŸฆFood & Cafe (5)
      • ๐Ÿ’‰์˜์–ด ๋„์ ์ด๊ธฐ (5)
      • โšก๋ฐœ์ „์†Œ (6)
      • ๐Ÿ“š๋…์„œ (1)
      • ๐Ÿ›ซ์—ฌํ–‰ (2)
      • ๐Ÿ“ˆ๋ธ”๋กœ๊ทธ๋งˆ์ผ€ํŒ… (6)
    • ๐ŸŒ๊ธˆ์œต (37)
    • ๐ŸŽจ์ทจ์—…End (16)
    • ๐Ÿ‘‹์ž๊ฒฉ์ฆ (150)
      • ๐Ÿ™ˆSQLD๊ฐœ๋ฐœ์ž (12)
      • ๐Ÿ”Œ์ „๊ธฐ๊ธฐ์‚ฌ (116)
      • ๐Ÿข์ •๋ณด์ฒ˜๋ฆฌ๊ธฐ์‚ฌ (7)
      • ๐ŸŒŽADsP(๋ฐ์ดํ„ฐ๋ถ„์„์ค€์ „๋ฌธ๊ฐ€) (10)
      • ๐Ÿš™1์ข… ๋Œ€ํ˜• ์šด์ „ ๋ฉดํ—ˆ (1)
      • โญTableau Desktop Specialist (2)
    • ๐Ÿฅ‡๊ณต๋Œ€์ด๊ฑฐ์ €๊ฒƒ(๋ง‰ํ•™๊ธฐ) (24)
      • ๐Ÿ“๊ณตํ•™์ˆ˜ํ•™ 2 (1)
      • ๐Ÿบ๋งˆ์ดํฌ๋กœํ”„๋กœ์„ธ์„œ์‹ค์Šต (4)
      • ๐ŸŒCAE (10)
      • โœˆ๏ธ์ž๋™์ฐจ๊ณตํ•™์‹คํ—˜2 (0)
      • ๐Ÿšข์œ ์ฒด์—ญํ•™ (6)
      • ๐Ÿš—ํ˜„๋Œ€์ฐจ H-๋ชจ๋นŒ๋ฆฌํ‹ฐ ํด๋ž˜์Šค 1๊ธฐ (3)

๋ธ”๋กœ๊ทธ ๋ฉ”๋‰ด

    ๊ณต์ง€์‚ฌํ•ญ

    • Vue, Typescript, React, Tableau,โ‹ฏ
    • ์ง„์ธ์‚ฌ๋Œ€์ฒœ๋ช…(็›กไบบไบ‹ๅพ…ๅคฉๅ‘ฝ)

    ์ธ๊ธฐ ๊ธ€

    ํƒœ๊ทธ

    • ์‚ผ์„ฑ์ „์ž
    • fluid mechanics
    • css
    • SMCI
    • ์—”์†”
    • ์œ ์ฒด์—ญํ•™
    • ๋””์นด๋ฅด๊ณ 
    • ์—…๋น„ํŠธ
    • ๋ถ€๋“ฑ๋ฅ 
    • ADsP
    • lgํ™”ํ•™
    • vue btn
    • ๋ฐฑ์ค€
    • ๋น…๋ฐ์ดํ„ฐ
    • ์ž๋ฐ”
    • ์—๋””์Šจev
    • ์—”๋น„๋””์•„
    • LG์—๋„ˆ์ง€์†”๋ฃจ์…˜
    • ์•Œ๊ณ ๋ฆฌ์ฆ˜
    • html
    • ipad dual monitor
    • ๋ธŒ๋ฃจํŠธํฌ์Šค
    • ์ „๊ธฐ์ฐจ
    • ์ง๋ ฌ๋ฆฌ์•กํ„ฐ
    • ๋น…๋ฐ์ดํ„ฐ๋ถ„์„์ค€์ „๋ฌธ๊ฐ€
    • rdfr
    • ํ…Œ์Šฌ๋ผ
    • ์ „๊ธฐ์ฐจ ๋ณด์กฐ๊ธˆ 2021
    • ์•„์ด์˜ค๋‹‰5
    • Python

    ์ตœ๊ทผ ๋Œ“๊ธ€

    ์ตœ๊ทผ ๊ธ€

    ํ‹ฐ์Šคํ† ๋ฆฌ

    hELLO ยท Designed By ์ •์ƒ์šฐ.
    Dev.Op

    Yollow ๐Ÿ“š

    KNN ์ž๋™์ฐจ ๋ถ„๋ฅ˜ ๋ฐ ์˜ˆ์ธก
    ๐Ÿ“WEB & ML & DL ํ”„๋กœ์ ํŠธ/๐ŸŒต2์ฐจ ํ”„๋กœ์ ํŠธ(LG)

    KNN ์ž๋™์ฐจ ๋ถ„๋ฅ˜ ๋ฐ ์˜ˆ์ธก

    2021. 12. 2. 15:38
    ๋ฐ˜์‘ํ˜•

    ์ถ”์ฒœ์„œ๋น„์Šค๋ฅผ knn์„ ํ™œ์šฉํ•˜์—ฌ ๊ธฐํšํ•˜๊ณ  ์žˆ๋‹ค.

     

    ๊ด€๋ จ ์ฝ”๋“œ๋ฅผ ์ž‘์„ฑํ•ด๋ณด์•˜๊ณ , ํ•ด์„์„ ์ง„ํ–‰ํ•ด๋ณด๊ฒ ๋‹ค.

     

     

    0. ๋ฐ์ดํ„ฐ์™€ ๋ ˆ์ด๋ธ”๋กœ ๋‚˜๋ˆ”

    ๋ถ„๋ฅ˜๊ธฐ์ค€์€ ์ž์ฒด์ ์œผ๋กœ ๋งŒ๋“ค์–ด๋ณด์•˜๋‹ค.

     

    ์•ž์˜  head ๋ถ€๋ถ„๋งŒ print(dtm.iloc[0:5]) ํ•ด๋ณด๋ฉด ๋‹ค์Œ๊ณผ ๊ฐ™์€ ์ถœ๋ ฅ ๊ฐ’์ด ๋‚˜์˜จ๋‹ค.

    0 Pricist

    1 Proud Patrons

    2 Camper

    3 Proud Patrons

    4 Pricist

    Name: class, dtype: object

     

    ๋“ฑ๋“ฑ.


    # class ๋ถ„๋ฅ˜ ๊ธฐ์ค€ - 5๊ฐ€์ง€
    # Elitist : ์ฐจ๋Š” ๊ทธ ์ € ์ฐจ๋ผ๊ณ  ์ƒ๊ฐํ•˜๋Š” ๋ถ€๋ฅ˜
    # Proud Patrons : ์ž๋™์ฐจ๊ฐ€ ์ž์‚ฐ์˜ ๋…ธ๋ ฅ์— ๋Œ€ํ•œ result์ด๊ฑฐ๋‚˜ ๊ด€์‹ฌ์„ ๋ฐ›๊ณ  ์‹ถ์–ดํ•˜๋Š” ๊ด€์ข…์˜ ๋ถ€๋ฅ˜
    # Camper : Camping์„ ์ฆ๊ธฐ๊ธฐ๋„ˆ ํฐ ๋ฉ์น˜์˜ ์ฐจ๋Ÿ‰์„ ์ข‹์•„ํ•˜๋Š” ๋ถ€๋ฅ˜
    # Fantasist : ๋‚จ๋“ค๋ณด๋‹ค๋Š” ์ž์‹ ์˜ YOLO๋‚˜ ํ™˜๊ฒฝ์„ ์ƒ๊ฐํ•˜์—ฌ ๊ตฌ์ž…ํ•˜๋Š” ๋ถ€๋ฅ˜
    # Pricist : ๊ฐ€์„ฑ๋น„๋ฅผ ์ค‘์š”์‹œ ์—ฌ๊ธฐ๋Š” ๋ถ€๋ฅ˜

     

    1. StandardScaler

    #feature scaling
    from sklearn.preprocessing import StandardScaler
    scaler = StandardScaler()
    scaler.fit(X_train)
    #feature scaling
    from sklearn.preprocessing import StandardScaler
    scaler = StandardScaler()
    scaler.fit(X_train)

    ๊ฑฐ๋ฆฌ ๊ณ„์‚ฐ์„ ์œ„ํ•ด์„œ ๊ฐ ํŠน์„ฑ๋“ค์„ ์Šค์ผ€์ผ๋ง(ํ‘œ์ค€ํ™”)

     

    # Z-score ํ‘œ์ค€ํ™”: ํ‰๊ท ์„ 0, ํ‘œ์ค€ํŽธ์ฐจ 1๋กœ ๋ณ€ํ™˜
    scaler = StandardScaler() # Scaler ๊ฐ์ฒด ์ƒ์„ฑ
    scaler.fit(X_train) # ์Šค์ผ€์ผ๋ง(ํ‘œ์ค€ํ™”)๋ฅผ ์œ„ํ•œ ํ‰๊ท ๊ณผ ํ‘œ์ค€ ํŽธ์ฐจ ๊ณ„์‚ฐ
    X_train = scaler.transform(X_train) # ์Šค์ผ€์ผ๋ง(ํ‘œ์ค€ํ™” ์ˆ˜ํ–‰)
    X_test = scaler.transform(X_test)
     
     

     

    ๋ฐ˜์‘ํ˜•
    ์ €์ž‘์žํ‘œ์‹œ (์ƒˆ์ฐฝ์—ด๋ฆผ)

    '๐Ÿ“WEB & ML & DL ํ”„๋กœ์ ํŠธ > ๐ŸŒต2์ฐจ ํ”„๋กœ์ ํŠธ(LG)' ์นดํ…Œ๊ณ ๋ฆฌ์˜ ๋‹ค๋ฅธ ๊ธ€

    ์œ ํŠœ๋ธŒ ์ž๋™์ฐจ ์˜์ƒ ๋Œ“๊ธ€ ๋ฐ ์ข‹์•„์š” ํ…์ŠคํŠธ ๋งˆ์ด๋‹  (0) 2021.12.11
    ์ž๋™์ฐจ ์œ ํŠœ๋ธŒ ๋ฆฌ๋ทฐ ๋ฐ์ดํ„ฐ - ๊ฐ์„ฑ๋ถ„์„(Sentimental Analysis)  (0) 2021.12.08
    ์ถ”์ฒœ ์•Œ๊ณ ๋ฆฌ์ฆ˜  (0) 2021.12.02
    ์ž๋™์ฐจ ๊ฐ์„ฑ๋ถ„์„ ํ‚ค์›Œ๋“œ  (0) 2021.11.20
    ๋…ผ๋ฌธ ์ง€์†์ ์ธ ์—…๋ฐ์ดํŠธ  (1) 2021.11.15
      '๐Ÿ“WEB & ML & DL ํ”„๋กœ์ ํŠธ/๐ŸŒต2์ฐจ ํ”„๋กœ์ ํŠธ(LG)' ์นดํ…Œ๊ณ ๋ฆฌ์˜ ๋‹ค๋ฅธ ๊ธ€
      • ์œ ํŠœ๋ธŒ ์ž๋™์ฐจ ์˜์ƒ ๋Œ“๊ธ€ ๋ฐ ์ข‹์•„์š” ํ…์ŠคํŠธ ๋งˆ์ด๋‹
      • ์ž๋™์ฐจ ์œ ํŠœ๋ธŒ ๋ฆฌ๋ทฐ ๋ฐ์ดํ„ฐ - ๊ฐ์„ฑ๋ถ„์„(Sentimental Analysis)
      • ์ถ”์ฒœ ์•Œ๊ณ ๋ฆฌ์ฆ˜
      • ์ž๋™์ฐจ ๊ฐ์„ฑ๋ถ„์„ ํ‚ค์›Œ๋“œ
      Dev.Op
      Dev.Op
      Interest: CS, Drive

      ํ‹ฐ์Šคํ† ๋ฆฌํˆด๋ฐ”