Dev.Op
Yollow ๐Ÿ“š
Dev.Op
์ „์ฒด ๋ฐฉ๋ฌธ์ž
์˜ค๋Š˜
์–ด์ œ
  • ๋ถ„๋ฅ˜ ์ „์ฒด๋ณด๊ธฐ (701)
    • ์œ ์ตํ•˜์…จ๋‹ค๋ฉด ๊ด‘๊ณ  ํ•œ๋ฒˆ๋งŒ ํด๋ฆญ ๋ถ€ํƒ๋“œ๋ฆด๊ฒŒ์š”~ (0)
    • ---------------------------.. (0)
    • Stock (1)
      • ์Šˆํผ๋งˆ์ดํฌ๋กœ์ปดํ“จํ„ฐ (2)
    • ๐Ÿง์ „๊ธฐ์ฐจ (72)
      • ๐Ÿ„lg์—๋„ˆ์ง€์†”๋ฃจ์…˜ (0)
      • ๐ŸŠํ˜„๋Œ€์ž๋™์ฐจ (0)
    • ๐Ÿ—๏ธ์†Œํ”„ํŠธ์›จ์–ด (243)
      • ๐Ÿ’ปpython (85)
      • โž•C & C++ (1)
      • โ˜•๏ธTableau (32)
      • ๐Ÿ‘‹SQL & MySQL (20)
      • ๐ŸฌHTML & CSS (14)
      • ๐Ÿ“—JavaScript (31)
      • ๐Ÿ“˜Pspice & Excel (2)
      • ๐Ÿ“•Matlab & COMSOL & CATIA (6)
      • ๐Ÿ“™java & Servlete & JSP (29)
      • ๐Ÿ““Raspberry PI 4 (5)
      • ๐Ÿ”จAnsys (2)
      • DJango (0)
      • Flutter (3)
      • Typescript (0)
      • ๐Ÿ†Vue (5)
      • ๐Ÿ‹Docker (1)
    • ๐Ÿ“‹์ฑ„์šฉ๊ณต๊ณ  (0)
    • ๐Ÿ“WEB & ML & DL ํ”„๋กœ์ ํŠธ (27)
      • ๐ŸŒต2์ฐจ ํ”„๋กœ์ ํŠธ(LG) (9)
    • ๐Ÿงฉ์ผ์ƒ (89)
      • ๐ŸŒค์ฝ”๋”ฉ ๊ณต๋ถ€ ์ผ์ง€ (1)
      • ๐Ÿšด์ž์ „๊ฑฐ (5)
      • ๐Ÿ“ฐํ…Œํฌ (20)
      • ๐ŸฆFood & Cafe (5)
      • ๐Ÿ’‰์˜์–ด ๋„์ ์ด๊ธฐ (5)
      • โšก๋ฐœ์ „์†Œ (6)
      • ๐Ÿ“š๋…์„œ (1)
      • ๐Ÿ›ซ์—ฌํ–‰ (2)
      • ๐Ÿ“ˆ๋ธ”๋กœ๊ทธ๋งˆ์ผ€ํŒ… (6)
    • ๐ŸŒ๊ธˆ์œต (37)
    • ๐ŸŽจ์ทจ์—…End (16)
    • ๐Ÿ‘‹์ž๊ฒฉ์ฆ (150)
      • ๐Ÿ™ˆSQLD๊ฐœ๋ฐœ์ž (12)
      • ๐Ÿ”Œ์ „๊ธฐ๊ธฐ์‚ฌ (116)
      • ๐Ÿข์ •๋ณด์ฒ˜๋ฆฌ๊ธฐ์‚ฌ (7)
      • ๐ŸŒŽADsP(๋ฐ์ดํ„ฐ๋ถ„์„์ค€์ „๋ฌธ๊ฐ€) (10)
      • ๐Ÿš™1์ข… ๋Œ€ํ˜• ์šด์ „ ๋ฉดํ—ˆ (1)
      • โญTableau Desktop Specialist (2)
    • ๐Ÿฅ‡๊ณต๋Œ€์ด๊ฑฐ์ €๊ฒƒ(๋ง‰ํ•™๊ธฐ) (24)
      • ๐Ÿ“๊ณตํ•™์ˆ˜ํ•™ 2 (1)
      • ๐Ÿบ๋งˆ์ดํฌ๋กœํ”„๋กœ์„ธ์„œ์‹ค์Šต (4)
      • ๐ŸŒCAE (10)
      • โœˆ๏ธ์ž๋™์ฐจ๊ณตํ•™์‹คํ—˜2 (0)
      • ๐Ÿšข์œ ์ฒด์—ญํ•™ (6)
      • ๐Ÿš—ํ˜„๋Œ€์ฐจ H-๋ชจ๋นŒ๋ฆฌํ‹ฐ ํด๋ž˜์Šค 1๊ธฐ (3)

๋ธ”๋กœ๊ทธ ๋ฉ”๋‰ด

    ๊ณต์ง€์‚ฌํ•ญ

    • Vue, Typescript, React, Tableau,โ‹ฏ
    • ์ง„์ธ์‚ฌ๋Œ€์ฒœ๋ช…(็›กไบบไบ‹ๅพ…ๅคฉๅ‘ฝ)

    ์ธ๊ธฐ ๊ธ€

    ํƒœ๊ทธ

    • ๋ธŒ๋ฃจํŠธํฌ์Šค
    • ipad dual monitor
    • ์‚ผ์„ฑ์ „์ž
    • css
    • ADsP
    • ์ง๋ ฌ๋ฆฌ์•กํ„ฐ
    • Python
    • ์—”๋น„๋””์•„
    • ์—…๋น„ํŠธ
    • ์—”์†”
    • vue btn
    • rdfr
    • ์—๋””์Šจev
    • ๋น…๋ฐ์ดํ„ฐ
    • ์ „๊ธฐ์ฐจ ๋ณด์กฐ๊ธˆ 2021
    • ๋ถ€๋“ฑ๋ฅ 
    • SMCI
    • LG์—๋„ˆ์ง€์†”๋ฃจ์…˜
    • ๋น…๋ฐ์ดํ„ฐ๋ถ„์„์ค€์ „๋ฌธ๊ฐ€
    • html
    • ์•„์ด์˜ค๋‹‰5
    • ๋””์นด๋ฅด๊ณ 
    • lgํ™”ํ•™
    • fluid mechanics
    • ํ…Œ์Šฌ๋ผ
    • ์ž๋ฐ”
    • ์•Œ๊ณ ๋ฆฌ์ฆ˜
    • ์ „๊ธฐ์ฐจ
    • ์œ ์ฒด์—ญํ•™
    • ๋ฐฑ์ค€

    ์ตœ๊ทผ ๋Œ“๊ธ€

    ์ตœ๊ทผ ๊ธ€

    ํ‹ฐ์Šคํ† ๋ฆฌ

    hELLO ยท Designed By ์ •์ƒ์šฐ.
    Dev.Op

    Yollow ๐Ÿ“š

    ๐Ÿ—๏ธ์†Œํ”„ํŠธ์›จ์–ด/๐Ÿ’ปpython

    [ML] 5๋ถ„์•ˆ์— ๋จธ์‹ ๋Ÿฌ๋‹ ๋ฟŒ์ˆ˜๊ธฐ (feat.breast cancer)

    2021. 11. 5. 02:35
    ๋ฐ˜์‘ํ˜•

    ์‚ฌ์ดํ‚ท๋Ÿฐ ๋ฐ์ดํ„ฐ์…‹์„ ํ™œ์šฉํ•œ ์ฝ”๋“œ์ด๋‹ค

     

     

     

     

    ๋ฒ„์ „ ๋ฐ ๋ผ์ด๋ธŒ๋Ÿฌ๋ฆฌ¶

    In [24]:
    import pandas as pd
    import numpy as np
    import matplotlib.pyplot as plt
    import sklearn
    
     

    1 ๋ฐ์ดํ„ฐ ํ™•์ธ¶

    In [3]:
    #์‹ค์ œ ๋ฐ์ดํ„ฐ์…‹ : ์œ ๋ฐฉ์•” ์ข…์–‘์˜ ์ž„์ƒ ๋ฐ์ดํ„ฐ- ์œ„์Šค์ฝ˜์‹  ์œ ๋ฐฉ์•” ๋ฐ์ดํ„ฐ์…‹
    # ์–‘์„ฑ : benign , ์Œ์„ฑ : malignant ๋ ˆ์ด๋ธ”๋˜์–ด ์žˆ๊ณ 
    # ์กฐ์ง ๋ฐ์ดํ„ฐ๋ฅผ ๊ธฐ๋ฐ˜์œผ๋กœ ์ข…์–‘์ด ์•…์„ฑ์ธ์ง€ ์˜ˆ์ธกํ•  ์ˆ˜ ์žˆ๋„๋ก ํ•™์Šตํ•˜๋Š” ๊ฒƒ์ด ๊ณผ์ œ
    
    from sklearn.datasets import load_breast_cancer
    cancer = load_breast_cancer()
    
    print("cancer.keys(): \n", cancer.keys())
    
     
    cancer.keys(): 
     dict_keys(['data', 'target', 'frame', 'target_names', 'DESCR', 'feature_names', 'filename'])
    
    In [4]:
    # ์„ค๋ช…
    print(cancer.DESCR)
    
     
    .. _breast_cancer_dataset:
    
    Breast cancer wisconsin (diagnostic) dataset
    --------------------------------------------
    
    **Data Set Characteristics:**
    
        :Number of Instances: 569
    
        :Number of Attributes: 30 numeric, predictive attributes and the class
    
        :Attribute Information:
            - radius (mean of distances from center to points on the perimeter)
            - texture (standard deviation of gray-scale values)
            - perimeter
            - area
            - smoothness (local variation in radius lengths)
            - compactness (perimeter^2 / area - 1.0)
            - concavity (severity of concave portions of the contour)
            - concave points (number of concave portions of the contour)
            - symmetry
            - fractal dimension ("coastline approximation" - 1)
    
            The mean, standard error, and "worst" or largest (mean of the three
            worst/largest values) of these features were computed for each image,
            resulting in 30 features.  For instance, field 0 is Mean Radius, field
            10 is Radius SE, field 20 is Worst Radius.
    
            - class:
                    - WDBC-Malignant
                    - WDBC-Benign
    
        :Summary Statistics:
    
        ===================================== ====== ======
                                               Min    Max
        ===================================== ====== ======
        radius (mean):                        6.981  28.11
        texture (mean):                       9.71   39.28
        perimeter (mean):                     43.79  188.5
        area (mean):                          143.5  2501.0
        smoothness (mean):                    0.053  0.163
        compactness (mean):                   0.019  0.345
        concavity (mean):                     0.0    0.427
        concave points (mean):                0.0    0.201
        symmetry (mean):                      0.106  0.304
        fractal dimension (mean):             0.05   0.097
        radius (standard error):              0.112  2.873
        texture (standard error):             0.36   4.885
        perimeter (standard error):           0.757  21.98
        area (standard error):                6.802  542.2
        smoothness (standard error):          0.002  0.031
        compactness (standard error):         0.002  0.135
        concavity (standard error):           0.0    0.396
        concave points (standard error):      0.0    0.053
        symmetry (standard error):            0.008  0.079
        fractal dimension (standard error):   0.001  0.03
        radius (worst):                       7.93   36.04
        texture (worst):                      12.02  49.54
        perimeter (worst):                    50.41  251.2
        area (worst):                         185.2  4254.0
        smoothness (worst):                   0.071  0.223
        compactness (worst):                  0.027  1.058
        concavity (worst):                    0.0    1.252
        concave points (worst):               0.0    0.291
        symmetry (worst):                     0.156  0.664
        fractal dimension (worst):            0.055  0.208
        ===================================== ====== ======
    
        :Missing Attribute Values: None
    
        :Class Distribution: 212 - Malignant, 357 - Benign
    
        :Creator:  Dr. William H. Wolberg, W. Nick Street, Olvi L. Mangasarian
    
        :Donor: Nick Street
    
        :Date: November, 1995
    
    This is a copy of UCI ML Breast Cancer Wisconsin (Diagnostic) datasets.
    https://goo.gl/U2Uwz2
    
    Features are computed from a digitized image of a fine needle
    aspirate (FNA) of a breast mass.  They describe
    characteristics of the cell nuclei present in the image.
    
    Separating plane described above was obtained using
    Multisurface Method-Tree (MSM-T) [K. P. Bennett, "Decision Tree
    Construction Via Linear Programming." Proceedings of the 4th
    Midwest Artificial Intelligence and Cognitive Science Society,
    pp. 97-101, 1992], a classification method which uses linear
    programming to construct a decision tree.  Relevant features
    were selected using an exhaustive search in the space of 1-4
    features and 1-3 separating planes.
    
    The actual linear program used to obtain the separating plane
    in the 3-dimensional space is that described in:
    [K. P. Bennett and O. L. Mangasarian: "Robust Linear
    Programming Discrimination of Two Linearly Inseparable Sets",
    Optimization Methods and Software 1, 1992, 23-34].
    
    This database is also available through the UW CS ftp server:
    
    ftp ftp.cs.wisc.edu
    cd math-prog/cpo-dataset/machine-learn/WDBC/
    
    .. topic:: References
    
       - W.N. Street, W.H. Wolberg and O.L. Mangasarian. Nuclear feature extraction 
         for breast tumor diagnosis. IS&T/SPIE 1993 International Symposium on 
         Electronic Imaging: Science and Technology, volume 1905, pages 861-870,
         San Jose, CA, 1993.
       - O.L. Mangasarian, W.N. Street and W.H. Wolberg. Breast cancer diagnosis and 
         prognosis via linear programming. Operations Research, 43(4), pages 570-577, 
         July-August 1995.
       - W.H. Wolberg, W.N. Street, and O.L. Mangasarian. Machine learning techniques
         to diagnose breast cancer from fine-needle aspirates. Cancer Letters 77 (1994) 
         163-171.
    
    In [5]:
    # ์œ ๋ฐฉ์•” ์†์„ฑ๋“ค
    print(cancer.feature_names)
    print(len(cancer.feature_names))
    
     
    ['mean radius' 'mean texture' 'mean perimeter' 'mean area'
     'mean smoothness' 'mean compactness' 'mean concavity'
     'mean concave points' 'mean symmetry' 'mean fractal dimension'
     'radius error' 'texture error' 'perimeter error' 'area error'
     'smoothness error' 'compactness error' 'concavity error'
     'concave points error' 'symmetry error' 'fractal dimension error'
     'worst radius' 'worst texture' 'worst perimeter' 'worst area'
     'worst smoothness' 'worst compactness' 'worst concavity'
     'worst concave points' 'worst symmetry' 'worst fractal dimension']
    30
    
    In [6]:
    print(cancer.data[:2], cancer.target[:2])
    
     
    [[1.799e+01 1.038e+01 1.228e+02 1.001e+03 1.184e-01 2.776e-01 3.001e-01
      1.471e-01 2.419e-01 7.871e-02 1.095e+00 9.053e-01 8.589e+00 1.534e+02
      6.399e-03 4.904e-02 5.373e-02 1.587e-02 3.003e-02 6.193e-03 2.538e+01
      1.733e+01 1.846e+02 2.019e+03 1.622e-01 6.656e-01 7.119e-01 2.654e-01
      4.601e-01 1.189e-01]
     [2.057e+01 1.777e+01 1.329e+02 1.326e+03 8.474e-02 7.864e-02 8.690e-02
      7.017e-02 1.812e-01 5.667e-02 5.435e-01 7.339e-01 3.398e+00 7.408e+01
      5.225e-03 1.308e-02 1.860e-02 1.340e-02 1.389e-02 3.532e-03 2.499e+01
      2.341e+01 1.588e+02 1.956e+03 1.238e-01 1.866e-01 2.416e-01 1.860e-01
      2.750e-01 8.902e-02]] [0 0]
    
    In [7]:
    df_cancer = pd.DataFrame(cancer.data, columns=cancer.feature_names)
    df_cancer[:4]
    
    Out[7]:
      mean radius mean texture mean perimeter mean area mean smoothness mean compactness mean concavity mean concave points mean symmetry mean fractal dimension ... worst radius worst texture worst perimeter worst area worst smoothness worst compactness worst concavity worst concave points worst symmetry worst fractal dimension
    0 17.99 10.38 122.80 1001.0 0.11840 0.27760 0.3001 0.14710 0.2419 0.07871 ... 25.38 17.33 184.60 2019.0 0.1622 0.6656 0.7119 0.2654 0.4601 0.11890
    1 20.57 17.77 132.90 1326.0 0.08474 0.07864 0.0869 0.07017 0.1812 0.05667 ... 24.99 23.41 158.80 1956.0 0.1238 0.1866 0.2416 0.1860 0.2750 0.08902
    2 19.69 21.25 130.00 1203.0 0.10960 0.15990 0.1974 0.12790 0.2069 0.05999 ... 23.57 25.53 152.50 1709.0 0.1444 0.4245 0.4504 0.2430 0.3613 0.08758
    3 11.42 20.38 77.58 386.1 0.14250 0.28390 0.2414 0.10520 0.2597 0.09744 ... 14.91 26.50 98.87 567.7 0.2098 0.8663 0.6869 0.2575 0.6638 0.17300

    4 rows × 30 columns

    In [8]:
    cancer.target_names.shape
    
    Out[8]:
    (2,)
    In [9]:
    cancer.target.shape
    
    Out[9]:
    (569,)
    In [13]:
    print(cancer.target_names)
    
     
    ['malignant' 'benign']
    
    In [14]:
    # ์–‘์„ฑ, ์Œ์„ฑ ์ˆ˜ ํŒŒ์•…ํ•˜๊ธฐ
    # 212 : malignant ์Œ์„ฑ /  357 : benign ์–‘์„ฑ
    np.bincount(cancer.target)
    
    Out[14]:
    array([212, 357], dtype=int64)
    In [16]:
    print("Class ๋ณ„ ์ƒ˜ํ”Œ ๊ฐœ์ˆ˜ : \n",
            {n: v for n,v in zip(cancer.target_names, np.bincount(cancer.target)) } )
    
     
    Class ๋ณ„ ์ƒ˜ํ”Œ ๊ฐœ์ˆ˜ : 
     {'malignant': 212, 'benign': 357}
    
    In [21]:
    # ๋ฐ์ดํ„ฐ ์†์„ฑ์— ๋Œ€ํ•œ ์ •๋ณด
    
    for i, desc in enumerate(cancer.feature_names):
        print('%02d : %s ' %(i, desc))
    # 02d ๋‘์ž๋ฆฌ์— ์ˆซ์ž๋ฅผ ๋„ฃ๊ธฐ ์œ„ํ•จ 
    
     
    00 : mean radius 
    01 : mean texture 
    02 : mean perimeter 
    03 : mean area 
    04 : mean smoothness 
    05 : mean compactness 
    06 : mean concavity 
    07 : mean concave points 
    08 : mean symmetry 
    09 : mean fractal dimension 
    10 : radius error 
    11 : texture error 
    12 : perimeter error 
    13 : area error 
    14 : smoothness error 
    15 : compactness error 
    16 : concavity error 
    17 : concave points error 
    18 : symmetry error 
    19 : fractal dimension error 
    20 : worst radius 
    21 : worst texture 
    22 : worst perimeter 
    23 : worst area 
    24 : worst smoothness 
    25 : worst compactness 
    26 : worst concavity 
    27 : worst concave points 
    28 : worst symmetry 
    29 : worst fractal dimension 
    
     

    2 ๋ฐ์ดํ„ฐ ์‹œ๊ฐํ™”¶

    In [28]:
    _, bins = np.histogram(cancer.data[:,0], bins=20)
    np.histogram(cancer.data[:,0], bins=20)
    
    Out[28]:
    (array([ 4, 15, 31, 48, 93, 92, 71, 58, 32, 23, 22, 28, 27, 11,  2,  5,  2,
             2,  0,  3], dtype=int64),
     array([ 6.981  ,  8.03745,  9.0939 , 10.15035, 11.2068 , 12.26325,
            13.3197 , 14.37615, 15.4326 , 16.48905, 17.5455 , 18.60195,
            19.6584 , 20.71485, 21.7713 , 22.82775, 23.8842 , 24.94065,
            25.9971 , 27.05355, 28.11   ]))
    In [29]:
    # ์Œ์„ฑ, ์–‘์„ฑ ๋‚˜๋ˆ„๊ธฐ
    
    malignant = cancer.data[cancer.target==0]
    benign = cancer.data[cancer.target==1]
    
    print(malignant.shape, benign.shape)
    
    
    print(malignant[:2], benign[:2])
    
    plt.hist(malignant[:,0], bins=bins, alpha=0.5)
    plt.hist(benign[:,0], bins=bins, alpha=0.5)
    plt.title(cancer.feature_names[0])
    
     
    (212, 30) (357, 30)
    [[1.799e+01 1.038e+01 1.228e+02 1.001e+03 1.184e-01 2.776e-01 3.001e-01
      1.471e-01 2.419e-01 7.871e-02 1.095e+00 9.053e-01 8.589e+00 1.534e+02
      6.399e-03 4.904e-02 5.373e-02 1.587e-02 3.003e-02 6.193e-03 2.538e+01
      1.733e+01 1.846e+02 2.019e+03 1.622e-01 6.656e-01 7.119e-01 2.654e-01
      4.601e-01 1.189e-01]
     [2.057e+01 1.777e+01 1.329e+02 1.326e+03 8.474e-02 7.864e-02 8.690e-02
      7.017e-02 1.812e-01 5.667e-02 5.435e-01 7.339e-01 3.398e+00 7.408e+01
      5.225e-03 1.308e-02 1.860e-02 1.340e-02 1.389e-02 3.532e-03 2.499e+01
      2.341e+01 1.588e+02 1.956e+03 1.238e-01 1.866e-01 2.416e-01 1.860e-01
      2.750e-01 8.902e-02]] [[1.354e+01 1.436e+01 8.746e+01 5.663e+02 9.779e-02 8.129e-02 6.664e-02
      4.781e-02 1.885e-01 5.766e-02 2.699e-01 7.886e-01 2.058e+00 2.356e+01
      8.462e-03 1.460e-02 2.387e-02 1.315e-02 1.980e-02 2.300e-03 1.511e+01
      1.926e+01 9.970e+01 7.112e+02 1.440e-01 1.773e-01 2.390e-01 1.288e-01
      2.977e-01 7.259e-02]
     [1.308e+01 1.571e+01 8.563e+01 5.200e+02 1.075e-01 1.270e-01 4.568e-02
      3.110e-02 1.967e-01 6.811e-02 1.852e-01 7.477e-01 1.383e+00 1.467e+01
      4.097e-03 1.898e-02 1.698e-02 6.490e-03 1.678e-02 2.425e-03 1.450e+01
      2.049e+01 9.609e+01 6.305e+02 1.312e-01 2.776e-01 1.890e-01 7.283e-02
      3.184e-01 8.183e-02]]
    
    Out[29]:
    Text(0.5, 1.0, 'mean radius')
     
    In [30]:
    plt.figure(figsize = [20,15])
    
    for col in range(30):
        plt.subplot(8,4,col+1)
        # _, bins ๋Š” ์ˆ˜ ๋งž์ถ”๊ธฐ ์œ„ํ•จ, ์†์„ฑ ๊ฐ’์€ ์ด 30๊ฐœ ์ด๋ฏ€๋กœ ,col ๋กœ ์ง€์ •
        _, bins = np.histogram(cancer.data[:,col], bins = 20)
    
        #plt ํžˆ์Šคํ† ๊ทธ๋žจ์€ ์–‘์„ฑ/์Œ์„ฑ์ด ์„œ๋กœ ๊ฒน์ณ์„œ ๋ณด์ผ ๊ฒƒ
        plt.hist(malignant[:,col], bins = bins, alpha = 0.5)
        plt.hist(benign[:,col], bins = bins, alpha = 0.5)
        plt.title(cancer.feature_names[col])
    
        if col==0:
            plt.legend(cancer.target_names)
        plt.xticks([])
        
    
     
     

    3 SVM ๋ชจ๋ธ ์ ์šฉํ•˜๊ธฐ¶

    • 100๋ฒˆ ๋ฐ˜๋ณตํ•ด์„œ Logistic Regression ๊ณผ ์„ ํ˜• SVM ์„ ์ ์šฉํ•ด๋ณด์ž
    • train_test_split() ํ•จ์ˆ˜์—์„œ ๋žœ๋คํ•˜๊ฒŒ ๋ฐ์ดํ„ฐ๋ฅผ ๋‚˜๋ˆ„๊ธฐ ๋•Œ๋ฌธ์— ๋งค๋ฒˆ ์ ์ˆ˜๊ฐ€ ๋‹ฌ๋ผ์ง„๋‹ค.
    • ์„ ํ˜• SVM ์˜ ๊ฒฐ๊ณผ๊ฐ€ ์ข‹์ง€ ๋ชปํ•˜๋‹ค. ์ด๊ฒƒ์€ ๋ฐ์ดํ„ฐ ์ •๊ทœํ™”๋ฅผ ํ•˜์ง€ ์•Š์•˜๊ธฐ ๋•Œ๋ฌธ์ด๋‹ค
    In [33]:
    from sklearn.linear_model import LogisticRegression
    from sklearn.model_selection import train_test_split
    
    In [36]:
    score = []
    
    for i in range(100):
        X_train, X_test, y_train, y_test = train_test_split(cancer.data, cancer.target)
        
        model = LogisticRegression() # ๋ชจ๋ธ ๊ฐ์ฒด ์ƒ์„ฑ
        model.fit(X_train, y_train) # ์ง€๋„ ํ•™์Šต
    
        sc = model.score(X_test,y_test) # model์˜ score ๋ฉ”์†Œ๋“œ๋ฅผ ํ†ตํ•ด ํ…Œ์ŠคํŠธ์…‹์—์„œ์˜ ๊ฒ€์ฆ ์ˆ˜ํ–‰
        score.append(sc)
    
    print('score = \n', score)
    
     
    C:\Users\bbeee\anaconda3\lib\site-packages\sklearn\linear_model\_logistic.py:763: ConvergenceWarning: lbfgs failed to converge (status=1):
    STOP: TOTAL NO. of ITERATIONS REACHED LIMIT.
    
    Increase the number of iterations (max_iter) or scale the data as shown in:
        https://scikit-learn.org/stable/modules/preprocessing.html
    Please also refer to the documentation for alternative solver options:
        https://scikit-learn.org/stable/modules/linear_model.html#logistic-regression
      n_iter_i = _check_optimize_result(
    C:\Users\bbeee\anaconda3\lib\site-packages\sklearn\linear_model\_logistic.py:763: ConvergenceWarning: lbfgs failed to converge (status=1):
    STOP: TOTAL NO. of ITERATIONS REACHED LIMIT.
    
    Increase the number of iterations (max_iter) or scale the data as shown in:
        https://scikit-learn.org/stable/modules/preprocessing.html
    Please also refer to the documentation for alternative solver options:
        https://scikit-learn.org/stable/modules/linear_model.html#logistic-regression
      n_iter_i = _check_optimize_result(
    C:\Users\bbeee\anaconda3\lib\site-packages\sklearn\linear_model\_logistic.py:763: ConvergenceWarning: lbfgs failed to converge (status=1):
    STOP: TOTAL NO. of ITERATIONS REACHED LIMIT.
    
    Increase the number of iterations (max_iter) or scale the data as shown in:
        https://scikit-learn.org/stable/modules/preprocessing.html
    Please also refer to the documentation for alternative solver options:
        https://scikit-learn.org/stable/modules/linear_model.html#logistic-regression
      n_iter_i = _check_optimize_result(
    C:\Users\bbeee\anaconda3\lib\site-packages\sklearn\linear_model\_logistic.py:763: ConvergenceWarning: lbfgs failed to converge (status=1):
    STOP: TOTAL NO. of ITERATIONS REACHED LIMIT.
    
    Increase the number of iterations (max_iter) or scale the data as shown in:
        https://scikit-learn.org/stable/modules/preprocessing.html
    Please also refer to the documentation for alternative solver options:
        https://scikit-learn.org/stable/modules/linear_model.html#logistic-regression
      n_iter_i = _check_optimize_result(
    C:\Users\bbeee\anaconda3\lib\site-packages\sklearn\linear_model\_logistic.py:763: ConvergenceWarning: lbfgs failed to converge (status=1):
    STOP: TOTAL NO. of ITERATIONS REACHED LIMIT.
    
    Increase the number of iterations (max_iter) or scale the data as shown in:
        https://scikit-learn.org/stable/modules/preprocessing.html
    Please also refer to the documentation for alternative solver options:
        https://scikit-learn.org/stable/modules/linear_model.html#logistic-regression
      n_iter_i = _check_optimize_result(
    C:\Users\bbeee\anaconda3\lib\site-packages\sklearn\linear_model\_logistic.py:763: ConvergenceWarning: lbfgs failed to converge (status=1):
    STOP: TOTAL NO. of ITERATIONS REACHED LIMIT.
    
    Increase the number of iterations (max_iter) or scale the data as shown in:
        https://scikit-learn.org/stable/modules/preprocessing.html
    Please also refer to the documentation for alternative solver options:
        https://scikit-learn.org/stable/modules/linear_model.html#logistic-regression
      n_iter_i = _check_optimize_result(
    C:\Users\bbeee\anaconda3\lib\site-packages\sklearn\linear_model\_logistic.py:763: ConvergenceWarning: lbfgs failed to converge (status=1):
    STOP: TOTAL NO. of ITERATIONS REACHED LIMIT.
    
    Increase the number of iterations (max_iter) or scale the data as shown in:
        https://scikit-learn.org/stable/modules/preprocessing.html
    Please also refer to the documentation for alternative solver options:
        https://scikit-learn.org/stable/modules/linear_model.html#logistic-regression
      n_iter_i = _check_optimize_result(
    C:\Users\bbeee\anaconda3\lib\site-packages\sklearn\linear_model\_logistic.py:763: ConvergenceWarning: lbfgs failed to converge (status=1):
    STOP: TOTAL NO. of ITERATIONS REACHED LIMIT.
    
    Increase the number of iterations (max_iter) or scale the data as shown in:
        https://scikit-learn.org/stable/modules/preprocessing.html
    Please also refer to the documentation for alternative solver options:
        https://scikit-learn.org/stable/modules/linear_model.html#logistic-regression
      n_iter_i = _check_optimize_result(
    C:\Users\bbeee\anaconda3\lib\site-packages\sklearn\linear_model\_logistic.py:763: ConvergenceWarning: lbfgs failed to converge (status=1):
    STOP: TOTAL NO. of ITERATIONS REACHED LIMIT.
    
    Increase the number of iterations (max_iter) or scale the data as shown in:
        https://scikit-learn.org/stable/modules/preprocessing.html
    Please also refer to the documentation for alternative solver options:
        https://scikit-learn.org/stable/modules/linear_model.html#logistic-regression
      n_iter_i = _check_optimize_result(
    C:\Users\bbeee\anaconda3\lib\site-packages\sklearn\linear_model\_logistic.py:763: ConvergenceWarning: lbfgs failed to converge (status=1):
    STOP: TOTAL NO. of ITERATIONS REACHED LIMIT.
    
    Increase the number of iterations (max_iter) or scale the data as shown in:
        https://scikit-learn.org/stable/modules/preprocessing.html
    Please also refer to the documentation for alternative solver options:
        https://scikit-learn.org/stable/modules/linear_model.html#logistic-regression
      n_iter_i = _check_optimize_result(
    C:\Users\bbeee\anaconda3\lib\site-packages\sklearn\linear_model\_logistic.py:763: ConvergenceWarning: lbfgs failed to converge (status=1):
    STOP: TOTAL NO. of ITERATIONS REACHED LIMIT.
    
    Increase the number of iterations (max_iter) or scale the data as shown in:
        https://scikit-learn.org/stable/modules/preprocessing.html
    Please also refer to the documentation for alternative solver options:
        https://scikit-learn.org/stable/modules/linear_model.html#logistic-regression
      n_iter_i = _check_optimize_result(
    C:\Users\bbeee\anaconda3\lib\site-packages\sklearn\linear_model\_logistic.py:763: ConvergenceWarning: lbfgs failed to converge (status=1):
    STOP: TOTAL NO. of ITERATIONS REACHED LIMIT.
    
    Increase the number of iterations (max_iter) or scale the data as shown in:
        https://scikit-learn.org/stable/modules/preprocessing.html
    Please also refer to the documentation for alternative solver options:
        https://scikit-learn.org/stable/modules/linear_model.html#logistic-regression
      n_iter_i = _check_optimize_result(
    C:\Users\bbeee\anaconda3\lib\site-packages\sklearn\linear_model\_logistic.py:763: ConvergenceWarning: lbfgs failed to converge (status=1):
    STOP: TOTAL NO. of ITERATIONS REACHED LIMIT.
    
    Increase the number of iterations (max_iter) or scale the data as shown in:
        https://scikit-learn.org/stable/modules/preprocessing.html
    Please also refer to the documentation for alternative solver options:
        https://scikit-learn.org/stable/modules/linear_model.html#logistic-regression
      n_iter_i = _check_optimize_result(
    C:\Users\bbeee\anaconda3\lib\site-packages\sklearn\linear_model\_logistic.py:763: ConvergenceWarning: lbfgs failed to converge (status=1):
    STOP: TOTAL NO. of ITERATIONS REACHED LIMIT.
    
    Increase the number of iterations (max_iter) or scale the data as shown in:
        https://scikit-learn.org/stable/modules/preprocessing.html
    Please also refer to the documentation for alternative solver options:
        https://scikit-learn.org/stable/modules/linear_model.html#logistic-regression
      n_iter_i = _check_optimize_result(
    C:\Users\bbeee\anaconda3\lib\site-packages\sklearn\linear_model\_logistic.py:763: ConvergenceWarning: lbfgs failed to converge (status=1):
    STOP: TOTAL NO. of ITERATIONS REACHED LIMIT.
    
    Increase the number of iterations (max_iter) or scale the data as shown in:
        https://scikit-learn.org/stable/modules/preprocessing.html
    Please also refer to the documentation for alternative solver options:
        https://scikit-learn.org/stable/modules/linear_model.html#logistic-regression
      n_iter_i = _check_optimize_result(
    C:\Users\bbeee\anaconda3\lib\site-packages\sklearn\linear_model\_logistic.py:763: ConvergenceWarning: lbfgs failed to converge (status=1):
    STOP: TOTAL NO. of ITERATIONS REACHED LIMIT.
    
    Increase the number of iterations (max_iter) or scale the data as shown in:
        https://scikit-learn.org/stable/modules/preprocessing.html
    Please also refer to the documentation for alternative solver options:
        https://scikit-learn.org/stable/modules/linear_model.html#logistic-regression
      n_iter_i = _check_optimize_result(
    C:\Users\bbeee\anaconda3\lib\site-packages\sklearn\linear_model\_logistic.py:763: ConvergenceWarning: lbfgs failed to converge (status=1):
    STOP: TOTAL NO. of ITERATIONS REACHED LIMIT.
    
    Increase the number of iterations (max_iter) or scale the data as shown in:
        https://scikit-learn.org/stable/modules/preprocessing.html
    Please also refer to the documentation for alternative solver options:
        https://scikit-learn.org/stable/modules/linear_model.html#logistic-regression
      n_iter_i = _check_optimize_result(
    C:\Users\bbeee\anaconda3\lib\site-packages\sklearn\linear_model\_logistic.py:763: ConvergenceWarning: lbfgs failed to converge (status=1):
    STOP: TOTAL NO. of ITERATIONS REACHED LIMIT.
    
    Increase the number of iterations (max_iter) or scale the data as shown in:
        https://scikit-learn.org/stable/modules/preprocessing.html
    Please also refer to the documentation for alternative solver options:
        https://scikit-learn.org/stable/modules/linear_model.html#logistic-regression
      n_iter_i = _check_optimize_result(
    C:\Users\bbeee\anaconda3\lib\site-packages\sklearn\linear_model\_logistic.py:763: ConvergenceWarning: lbfgs failed to converge (status=1):
    STOP: TOTAL NO. of ITERATIONS REACHED LIMIT.
    
    Increase the number of iterations (max_iter) or scale the data as shown in:
        https://scikit-learn.org/stable/modules/preprocessing.html
    Please also refer to the documentation for alternative solver options:
        https://scikit-learn.org/stable/modules/linear_model.html#logistic-regression
      n_iter_i = _check_optimize_result(
    C:\Users\bbeee\anaconda3\lib\site-packages\sklearn\linear_model\_logistic.py:763: ConvergenceWarning: lbfgs failed to converge (status=1):
    STOP: TOTAL NO. of ITERATIONS REACHED LIMIT.
    
    Increase the number of iterations (max_iter) or scale the data as shown in:
        https://scikit-learn.org/stable/modules/preprocessing.html
    Please also refer to the documentation for alternative solver options:
        https://scikit-learn.org/stable/modules/linear_model.html#logistic-regression
      n_iter_i = _check_optimize_result(
    C:\Users\bbeee\anaconda3\lib\site-packages\sklearn\linear_model\_logistic.py:763: ConvergenceWarning: lbfgs failed to converge (status=1):
    STOP: TOTAL NO. of ITERATIONS REACHED LIMIT.
    
    Increase the number of iterations (max_iter) or scale the data as shown in:
        https://scikit-learn.org/stable/modules/preprocessing.html
    Please also refer to the documentation for alternative solver options:
        https://scikit-learn.org/stable/modules/linear_model.html#logistic-regression
      n_iter_i = _check_optimize_result(
    C:\Users\bbeee\anaconda3\lib\site-packages\sklearn\linear_model\_logistic.py:763: ConvergenceWarning: lbfgs failed to converge (status=1):
    STOP: TOTAL NO. of ITERATIONS REACHED LIMIT.
    
    Increase the number of iterations (max_iter) or scale the data as shown in:
        https://scikit-learn.org/stable/modules/preprocessing.html
    Please also refer to the documentation for alternative solver options:
        https://scikit-learn.org/stable/modules/linear_model.html#logistic-regression
      n_iter_i = _check_optimize_result(
    C:\Users\bbeee\anaconda3\lib\site-packages\sklearn\linear_model\_logistic.py:763: ConvergenceWarning: lbfgs failed to converge (status=1):
    STOP: TOTAL NO. of ITERATIONS REACHED LIMIT.
    
    Increase the number of iterations (max_iter) or scale the data as shown in:
        https://scikit-learn.org/stable/modules/preprocessing.html
    Please also refer to the documentation for alternative solver options:
        https://scikit-learn.org/stable/modules/linear_model.html#logistic-regression
      n_iter_i = _check_optimize_result(
    C:\Users\bbeee\anaconda3\lib\site-packages\sklearn\linear_model\_logistic.py:763: ConvergenceWarning: lbfgs failed to converge (status=1):
    STOP: TOTAL NO. of ITERATIONS REACHED LIMIT.
    
    Increase the number of iterations (max_iter) or scale the data as shown in:
        https://scikit-learn.org/stable/modules/preprocessing.html
    Please also refer to the documentation for alternative solver options:
        https://scikit-learn.org/stable/modules/linear_model.html#logistic-regression
      n_iter_i = _check_optimize_result(
    C:\Users\bbeee\anaconda3\lib\site-packages\sklearn\linear_model\_logistic.py:763: ConvergenceWarning: lbfgs failed to converge (status=1):
    STOP: TOTAL NO. of ITERATIONS REACHED LIMIT.
    
    Increase the number of iterations (max_iter) or scale the data as shown in:
        https://scikit-learn.org/stable/modules/preprocessing.html
    Please also refer to the documentation for alternative solver options:
        https://scikit-learn.org/stable/modules/linear_model.html#logistic-regression
      n_iter_i = _check_optimize_result(
    C:\Users\bbeee\anaconda3\lib\site-packages\sklearn\linear_model\_logistic.py:763: ConvergenceWarning: lbfgs failed to converge (status=1):
    STOP: TOTAL NO. of ITERATIONS REACHED LIMIT.
    
    Increase the number of iterations (max_iter) or scale the data as shown in:
        https://scikit-learn.org/stable/modules/preprocessing.html
    Please also refer to the documentation for alternative solver options:
        https://scikit-learn.org/stable/modules/linear_model.html#logistic-regression
      n_iter_i = _check_optimize_result(
    C:\Users\bbeee\anaconda3\lib\site-packages\sklearn\linear_model\_logistic.py:763: ConvergenceWarning: lbfgs failed to converge (status=1):
    STOP: TOTAL NO. of ITERATIONS REACHED LIMIT.
    
    Increase the number of iterations (max_iter) or scale the data as shown in:
        https://scikit-learn.org/stable/modules/preprocessing.html
    Please also refer to the documentation for alternative solver options:
        https://scikit-learn.org/stable/modules/linear_model.html#logistic-regression
      n_iter_i = _check_optimize_result(
    C:\Users\bbeee\anaconda3\lib\site-packages\sklearn\linear_model\_logistic.py:763: ConvergenceWarning: lbfgs failed to converge (status=1):
    STOP: TOTAL NO. of ITERATIONS REACHED LIMIT.
    
    Increase the number of iterations (max_iter) or scale the data as shown in:
        https://scikit-learn.org/stable/modules/preprocessing.html
    Please also refer to the documentation for alternative solver options:
        https://scikit-learn.org/stable/modules/linear_model.html#logistic-regression
      n_iter_i = _check_optimize_result(
    C:\Users\bbeee\anaconda3\lib\site-packages\sklearn\linear_model\_logistic.py:763: ConvergenceWarning: lbfgs failed to converge (status=1):
    STOP: TOTAL NO. of ITERATIONS REACHED LIMIT.
    
    Increase the number of iterations (max_iter) or scale the data as shown in:
        https://scikit-learn.org/stable/modules/preprocessing.html
    Please also refer to the documentation for alternative solver options:
        https://scikit-learn.org/stable/modules/linear_model.html#logistic-regression
      n_iter_i = _check_optimize_result(
    C:\Users\bbeee\anaconda3\lib\site-packages\sklearn\linear_model\_logistic.py:763: ConvergenceWarning: lbfgs failed to converge (status=1):
    STOP: TOTAL NO. of ITERATIONS REACHED LIMIT.
    
    Increase the number of iterations (max_iter) or scale the data as shown in:
        https://scikit-learn.org/stable/modules/preprocessing.html
    Please also refer to the documentation for alternative solver options:
        https://scikit-learn.org/stable/modules/linear_model.html#logistic-regression
      n_iter_i = _check_optimize_result(
    C:\Users\bbeee\anaconda3\lib\site-packages\sklearn\linear_model\_logistic.py:763: ConvergenceWarning: lbfgs failed to converge (status=1):
    STOP: TOTAL NO. of ITERATIONS REACHED LIMIT.
    
    Increase the number of iterations (max_iter) or scale the data as shown in:
        https://scikit-learn.org/stable/modules/preprocessing.html
    Please also refer to the documentation for alternative solver options:
        https://scikit-learn.org/stable/modules/linear_model.html#logistic-regression
      n_iter_i = _check_optimize_result(
    C:\Users\bbeee\anaconda3\lib\site-packages\sklearn\linear_model\_logistic.py:763: ConvergenceWarning: lbfgs failed to converge (status=1):
    STOP: TOTAL NO. of ITERATIONS REACHED LIMIT.
    
    Increase the number of iterations (max_iter) or scale the data as shown in:
        https://scikit-learn.org/stable/modules/preprocessing.html
    Please also refer to the documentation for alternative solver options:
        https://scikit-learn.org/stable/modules/linear_model.html#logistic-regression
      n_iter_i = _check_optimize_result(
    C:\Users\bbeee\anaconda3\lib\site-packages\sklearn\linear_model\_logistic.py:763: ConvergenceWarning: lbfgs failed to converge (status=1):
    STOP: TOTAL NO. of ITERATIONS REACHED LIMIT.
    
    Increase the number of iterations (max_iter) or scale the data as shown in:
        https://scikit-learn.org/stable/modules/preprocessing.html
    Please also refer to the documentation for alternative solver options:
        https://scikit-learn.org/stable/modules/linear_model.html#logistic-regression
      n_iter_i = _check_optimize_result(
    C:\Users\bbeee\anaconda3\lib\site-packages\sklearn\linear_model\_logistic.py:763: ConvergenceWarning: lbfgs failed to converge (status=1):
    STOP: TOTAL NO. of ITERATIONS REACHED LIMIT.
    
    Increase the number of iterations (max_iter) or scale the data as shown in:
        https://scikit-learn.org/stable/modules/preprocessing.html
    Please also refer to the documentation for alternative solver options:
        https://scikit-learn.org/stable/modules/linear_model.html#logistic-regression
      n_iter_i = _check_optimize_result(
    C:\Users\bbeee\anaconda3\lib\site-packages\sklearn\linear_model\_logistic.py:763: ConvergenceWarning: lbfgs failed to converge (status=1):
    STOP: TOTAL NO. of ITERATIONS REACHED LIMIT.
    
    Increase the number of iterations (max_iter) or scale the data as shown in:
        https://scikit-learn.org/stable/modules/preprocessing.html
    Please also refer to the documentation for alternative solver options:
        https://scikit-learn.org/stable/modules/linear_model.html#logistic-regression
      n_iter_i = _check_optimize_result(
    C:\Users\bbeee\anaconda3\lib\site-packages\sklearn\linear_model\_logistic.py:763: ConvergenceWarning: lbfgs failed to converge (status=1):
    STOP: TOTAL NO. of ITERATIONS REACHED LIMIT.
    
    Increase the number of iterations (max_iter) or scale the data as shown in:
        https://scikit-learn.org/stable/modules/preprocessing.html
    Please also refer to the documentation for alternative solver options:
        https://scikit-learn.org/stable/modules/linear_model.html#logistic-regression
      n_iter_i = _check_optimize_result(
    C:\Users\bbeee\anaconda3\lib\site-packages\sklearn\linear_model\_logistic.py:763: ConvergenceWarning: lbfgs failed to converge (status=1):
    STOP: TOTAL NO. of ITERATIONS REACHED LIMIT.
    
    Increase the number of iterations (max_iter) or scale the data as shown in:
        https://scikit-learn.org/stable/modules/preprocessing.html
    Please also refer to the documentation for alternative solver options:
        https://scikit-learn.org/stable/modules/linear_model.html#logistic-regression
      n_iter_i = _check_optimize_result(
    C:\Users\bbeee\anaconda3\lib\site-packages\sklearn\linear_model\_logistic.py:763: ConvergenceWarning: lbfgs failed to converge (status=1):
    STOP: TOTAL NO. of ITERATIONS REACHED LIMIT.
    
    Increase the number of iterations (max_iter) or scale the data as shown in:
        https://scikit-learn.org/stable/modules/preprocessing.html
    Please also refer to the documentation for alternative solver options:
        https://scikit-learn.org/stable/modules/linear_model.html#logistic-regression
      n_iter_i = _check_optimize_result(
    C:\Users\bbeee\anaconda3\lib\site-packages\sklearn\linear_model\_logistic.py:763: ConvergenceWarning: lbfgs failed to converge (status=1):
    STOP: TOTAL NO. of ITERATIONS REACHED LIMIT.
    
    Increase the number of iterations (max_iter) or scale the data as shown in:
        https://scikit-learn.org/stable/modules/preprocessing.html
    Please also refer to the documentation for alternative solver options:
        https://scikit-learn.org/stable/modules/linear_model.html#logistic-regression
      n_iter_i = _check_optimize_result(
    C:\Users\bbeee\anaconda3\lib\site-packages\sklearn\linear_model\_logistic.py:763: ConvergenceWarning: lbfgs failed to converge (status=1):
    STOP: TOTAL NO. of ITERATIONS REACHED LIMIT.
    
    Increase the number of iterations (max_iter) or scale the data as shown in:
        https://scikit-learn.org/stable/modules/preprocessing.html
    Please also refer to the documentation for alternative solver options:
        https://scikit-learn.org/stable/modules/linear_model.html#logistic-regression
      n_iter_i = _check_optimize_result(
    C:\Users\bbeee\anaconda3\lib\site-packages\sklearn\linear_model\_logistic.py:763: ConvergenceWarning: lbfgs failed to converge (status=1):
    STOP: TOTAL NO. of ITERATIONS REACHED LIMIT.
    
    Increase the number of iterations (max_iter) or scale the data as shown in:
        https://scikit-learn.org/stable/modules/preprocessing.html
    Please also refer to the documentation for alternative solver options:
        https://scikit-learn.org/stable/modules/linear_model.html#logistic-regression
      n_iter_i = _check_optimize_result(
    C:\Users\bbeee\anaconda3\lib\site-packages\sklearn\linear_model\_logistic.py:763: ConvergenceWarning: lbfgs failed to converge (status=1):
    STOP: TOTAL NO. of ITERATIONS REACHED LIMIT.
    
    Increase the number of iterations (max_iter) or scale the data as shown in:
        https://scikit-learn.org/stable/modules/preprocessing.html
    Please also refer to the documentation for alternative solver options:
        https://scikit-learn.org/stable/modules/linear_model.html#logistic-regression
      n_iter_i = _check_optimize_result(
    C:\Users\bbeee\anaconda3\lib\site-packages\sklearn\linear_model\_logistic.py:763: ConvergenceWarning: lbfgs failed to converge (status=1):
    STOP: TOTAL NO. of ITERATIONS REACHED LIMIT.
    
    Increase the number of iterations (max_iter) or scale the data as shown in:
        https://scikit-learn.org/stable/modules/preprocessing.html
    Please also refer to the documentation for alternative solver options:
        https://scikit-learn.org/stable/modules/linear_model.html#logistic-regression
      n_iter_i = _check_optimize_result(
    C:\Users\bbeee\anaconda3\lib\site-packages\sklearn\linear_model\_logistic.py:763: ConvergenceWarning: lbfgs failed to converge (status=1):
    STOP: TOTAL NO. of ITERATIONS REACHED LIMIT.
    
    Increase the number of iterations (max_iter) or scale the data as shown in:
        https://scikit-learn.org/stable/modules/preprocessing.html
    Please also refer to the documentation for alternative solver options:
        https://scikit-learn.org/stable/modules/linear_model.html#logistic-regression
      n_iter_i = _check_optimize_result(
    C:\Users\bbeee\anaconda3\lib\site-packages\sklearn\linear_model\_logistic.py:763: ConvergenceWarning: lbfgs failed to converge (status=1):
    STOP: TOTAL NO. of ITERATIONS REACHED LIMIT.
    
    Increase the number of iterations (max_iter) or scale the data as shown in:
        https://scikit-learn.org/stable/modules/preprocessing.html
    Please also refer to the documentation for alternative solver options:
        https://scikit-learn.org/stable/modules/linear_model.html#logistic-regression
      n_iter_i = _check_optimize_result(
    C:\Users\bbeee\anaconda3\lib\site-packages\sklearn\linear_model\_logistic.py:763: ConvergenceWarning: lbfgs failed to converge (status=1):
    STOP: TOTAL NO. of ITERATIONS REACHED LIMIT.
    
    Increase the number of iterations (max_iter) or scale the data as shown in:
        https://scikit-learn.org/stable/modules/preprocessing.html
    Please also refer to the documentation for alternative solver options:
        https://scikit-learn.org/stable/modules/linear_model.html#logistic-regression
      n_iter_i = _check_optimize_result(
    C:\Users\bbeee\anaconda3\lib\site-packages\sklearn\linear_model\_logistic.py:763: ConvergenceWarning: lbfgs failed to converge (status=1):
    STOP: TOTAL NO. of ITERATIONS REACHED LIMIT.
    
    Increase the number of iterations (max_iter) or scale the data as shown in:
        https://scikit-learn.org/stable/modules/preprocessing.html
    Please also refer to the documentation for alternative solver options:
        https://scikit-learn.org/stable/modules/linear_model.html#logistic-regression
      n_iter_i = _check_optimize_result(
    C:\Users\bbeee\anaconda3\lib\site-packages\sklearn\linear_model\_logistic.py:763: ConvergenceWarning: lbfgs failed to converge (status=1):
    STOP: TOTAL NO. of ITERATIONS REACHED LIMIT.
    
    Increase the number of iterations (max_iter) or scale the data as shown in:
        https://scikit-learn.org/stable/modules/preprocessing.html
    Please also refer to the documentation for alternative solver options:
        https://scikit-learn.org/stable/modules/linear_model.html#logistic-regression
      n_iter_i = _check_optimize_result(
    C:\Users\bbeee\anaconda3\lib\site-packages\sklearn\linear_model\_logistic.py:763: ConvergenceWarning: lbfgs failed to converge (status=1):
    STOP: TOTAL NO. of ITERATIONS REACHED LIMIT.
    
    Increase the number of iterations (max_iter) or scale the data as shown in:
        https://scikit-learn.org/stable/modules/preprocessing.html
    Please also refer to the documentation for alternative solver options:
        https://scikit-learn.org/stable/modules/linear_model.html#logistic-regression
      n_iter_i = _check_optimize_result(
    C:\Users\bbeee\anaconda3\lib\site-packages\sklearn\linear_model\_logistic.py:763: ConvergenceWarning: lbfgs failed to converge (status=1):
    STOP: TOTAL NO. of ITERATIONS REACHED LIMIT.
    
    Increase the number of iterations (max_iter) or scale the data as shown in:
        https://scikit-learn.org/stable/modules/preprocessing.html
    Please also refer to the documentation for alternative solver options:
        https://scikit-learn.org/stable/modules/linear_model.html#logistic-regression
      n_iter_i = _check_optimize_result(
    C:\Users\bbeee\anaconda3\lib\site-packages\sklearn\linear_model\_logistic.py:763: ConvergenceWarning: lbfgs failed to converge (status=1):
    STOP: TOTAL NO. of ITERATIONS REACHED LIMIT.
    
    Increase the number of iterations (max_iter) or scale the data as shown in:
        https://scikit-learn.org/stable/modules/preprocessing.html
    Please also refer to the documentation for alternative solver options:
        https://scikit-learn.org/stable/modules/linear_model.html#logistic-regression
      n_iter_i = _check_optimize_result(
    C:\Users\bbeee\anaconda3\lib\site-packages\sklearn\linear_model\_logistic.py:763: ConvergenceWarning: lbfgs failed to converge (status=1):
    STOP: TOTAL NO. of ITERATIONS REACHED LIMIT.
    
    Increase the number of iterations (max_iter) or scale the data as shown in:
        https://scikit-learn.org/stable/modules/preprocessing.html
    Please also refer to the documentation for alternative solver options:
        https://scikit-learn.org/stable/modules/linear_model.html#logistic-regression
      n_iter_i = _check_optimize_result(
    C:\Users\bbeee\anaconda3\lib\site-packages\sklearn\linear_model\_logistic.py:763: ConvergenceWarning: lbfgs failed to converge (status=1):
    STOP: TOTAL NO. of ITERATIONS REACHED LIMIT.
    
    Increase the number of iterations (max_iter) or scale the data as shown in:
        https://scikit-learn.org/stable/modules/preprocessing.html
    Please also refer to the documentation for alternative solver options:
        https://scikit-learn.org/stable/modules/linear_model.html#logistic-regression
      n_iter_i = _check_optimize_result(
    C:\Users\bbeee\anaconda3\lib\site-packages\sklearn\linear_model\_logistic.py:763: ConvergenceWarning: lbfgs failed to converge (status=1):
    STOP: TOTAL NO. of ITERATIONS REACHED LIMIT.
    
    Increase the number of iterations (max_iter) or scale the data as shown in:
        https://scikit-learn.org/stable/modules/preprocessing.html
    Please also refer to the documentation for alternative solver options:
        https://scikit-learn.org/stable/modules/linear_model.html#logistic-regression
      n_iter_i = _check_optimize_result(
    C:\Users\bbeee\anaconda3\lib\site-packages\sklearn\linear_model\_logistic.py:763: ConvergenceWarning: lbfgs failed to converge (status=1):
    STOP: TOTAL NO. of ITERATIONS REACHED LIMIT.
    
    Increase the number of iterations (max_iter) or scale the data as shown in:
        https://scikit-learn.org/stable/modules/preprocessing.html
    Please also refer to the documentation for alternative solver options:
        https://scikit-learn.org/stable/modules/linear_model.html#logistic-regression
      n_iter_i = _check_optimize_result(
    C:\Users\bbeee\anaconda3\lib\site-packages\sklearn\linear_model\_logistic.py:763: ConvergenceWarning: lbfgs failed to converge (status=1):
    STOP: TOTAL NO. of ITERATIONS REACHED LIMIT.
    
    Increase the number of iterations (max_iter) or scale the data as shown in:
        https://scikit-learn.org/stable/modules/preprocessing.html
    Please also refer to the documentation for alternative solver options:
        https://scikit-learn.org/stable/modules/linear_model.html#logistic-regression
      n_iter_i = _check_optimize_result(
    C:\Users\bbeee\anaconda3\lib\site-packages\sklearn\linear_model\_logistic.py:763: ConvergenceWarning: lbfgs failed to converge (status=1):
    STOP: TOTAL NO. of ITERATIONS REACHED LIMIT.
    
    Increase the number of iterations (max_iter) or scale the data as shown in:
        https://scikit-learn.org/stable/modules/preprocessing.html
    Please also refer to the documentation for alternative solver options:
        https://scikit-learn.org/stable/modules/linear_model.html#logistic-regression
      n_iter_i = _check_optimize_result(
    C:\Users\bbeee\anaconda3\lib\site-packages\sklearn\linear_model\_logistic.py:763: ConvergenceWarning: lbfgs failed to converge (status=1):
    STOP: TOTAL NO. of ITERATIONS REACHED LIMIT.
    
    Increase the number of iterations (max_iter) or scale the data as shown in:
        https://scikit-learn.org/stable/modules/preprocessing.html
    Please also refer to the documentation for alternative solver options:
        https://scikit-learn.org/stable/modules/linear_model.html#logistic-regression
      n_iter_i = _check_optimize_result(
    C:\Users\bbeee\anaconda3\lib\site-packages\sklearn\linear_model\_logistic.py:763: ConvergenceWarning: lbfgs failed to converge (status=1):
    STOP: TOTAL NO. of ITERATIONS REACHED LIMIT.
    
    Increase the number of iterations (max_iter) or scale the data as shown in:
        https://scikit-learn.org/stable/modules/preprocessing.html
    Please also refer to the documentation for alternative solver options:
        https://scikit-learn.org/stable/modules/linear_model.html#logistic-regression
      n_iter_i = _check_optimize_result(
    C:\Users\bbeee\anaconda3\lib\site-packages\sklearn\linear_model\_logistic.py:763: ConvergenceWarning: lbfgs failed to converge (status=1):
    STOP: TOTAL NO. of ITERATIONS REACHED LIMIT.
    
    Increase the number of iterations (max_iter) or scale the data as shown in:
        https://scikit-learn.org/stable/modules/preprocessing.html
    Please also refer to the documentation for alternative solver options:
        https://scikit-learn.org/stable/modules/linear_model.html#logistic-regression
      n_iter_i = _check_optimize_result(
    C:\Users\bbeee\anaconda3\lib\site-packages\sklearn\linear_model\_logistic.py:763: ConvergenceWarning: lbfgs failed to converge (status=1):
    STOP: TOTAL NO. of ITERATIONS REACHED LIMIT.
    
    Increase the number of iterations (max_iter) or scale the data as shown in:
        https://scikit-learn.org/stable/modules/preprocessing.html
    Please also refer to the documentation for alternative solver options:
        https://scikit-learn.org/stable/modules/linear_model.html#logistic-regression
      n_iter_i = _check_optimize_result(
    C:\Users\bbeee\anaconda3\lib\site-packages\sklearn\linear_model\_logistic.py:763: ConvergenceWarning: lbfgs failed to converge (status=1):
    STOP: TOTAL NO. of ITERATIONS REACHED LIMIT.
    
    Increase the number of iterations (max_iter) or scale the data as shown in:
        https://scikit-learn.org/stable/modules/preprocessing.html
    Please also refer to the documentation for alternative solver options:
        https://scikit-learn.org/stable/modules/linear_model.html#logistic-regression
      n_iter_i = _check_optimize_result(
    C:\Users\bbeee\anaconda3\lib\site-packages\sklearn\linear_model\_logistic.py:763: ConvergenceWarning: lbfgs failed to converge (status=1):
    STOP: TOTAL NO. of ITERATIONS REACHED LIMIT.
    
    Increase the number of iterations (max_iter) or scale the data as shown in:
        https://scikit-learn.org/stable/modules/preprocessing.html
    Please also refer to the documentation for alternative solver options:
        https://scikit-learn.org/stable/modules/linear_model.html#logistic-regression
      n_iter_i = _check_optimize_result(
    C:\Users\bbeee\anaconda3\lib\site-packages\sklearn\linear_model\_logistic.py:763: ConvergenceWarning: lbfgs failed to converge (status=1):
    STOP: TOTAL NO. of ITERATIONS REACHED LIMIT.
    
    Increase the number of iterations (max_iter) or scale the data as shown in:
        https://scikit-learn.org/stable/modules/preprocessing.html
    Please also refer to the documentation for alternative solver options:
        https://scikit-learn.org/stable/modules/linear_model.html#logistic-regression
      n_iter_i = _check_optimize_result(
    C:\Users\bbeee\anaconda3\lib\site-packages\sklearn\linear_model\_logistic.py:763: ConvergenceWarning: lbfgs failed to converge (status=1):
    STOP: TOTAL NO. of ITERATIONS REACHED LIMIT.
    
    Increase the number of iterations (max_iter) or scale the data as shown in:
        https://scikit-learn.org/stable/modules/preprocessing.html
    Please also refer to the documentation for alternative solver options:
        https://scikit-learn.org/stable/modules/linear_model.html#logistic-regression
      n_iter_i = _check_optimize_result(
    C:\Users\bbeee\anaconda3\lib\site-packages\sklearn\linear_model\_logistic.py:763: ConvergenceWarning: lbfgs failed to converge (status=1):
    STOP: TOTAL NO. of ITERATIONS REACHED LIMIT.
    
    Increase the number of iterations (max_iter) or scale the data as shown in:
        https://scikit-learn.org/stable/modules/preprocessing.html
    Please also refer to the documentation for alternative solver options:
        https://scikit-learn.org/stable/modules/linear_model.html#logistic-regression
      n_iter_i = _check_optimize_result(
    C:\Users\bbeee\anaconda3\lib\site-packages\sklearn\linear_model\_logistic.py:763: ConvergenceWarning: lbfgs failed to converge (status=1):
    STOP: TOTAL NO. of ITERATIONS REACHED LIMIT.
    
    Increase the number of iterations (max_iter) or scale the data as shown in:
        https://scikit-learn.org/stable/modules/preprocessing.html
    Please also refer to the documentation for alternative solver options:
        https://scikit-learn.org/stable/modules/linear_model.html#logistic-regression
      n_iter_i = _check_optimize_result(
    C:\Users\bbeee\anaconda3\lib\site-packages\sklearn\linear_model\_logistic.py:763: ConvergenceWarning: lbfgs failed to converge (status=1):
    STOP: TOTAL NO. of ITERATIONS REACHED LIMIT.
    
    Increase the number of iterations (max_iter) or scale the data as shown in:
        https://scikit-learn.org/stable/modules/preprocessing.html
    Please also refer to the documentation for alternative solver options:
        https://scikit-learn.org/stable/modules/linear_model.html#logistic-regression
      n_iter_i = _check_optimize_result(
    C:\Users\bbeee\anaconda3\lib\site-packages\sklearn\linear_model\_logistic.py:763: ConvergenceWarning: lbfgs failed to converge (status=1):
    STOP: TOTAL NO. of ITERATIONS REACHED LIMIT.
    
    Increase the number of iterations (max_iter) or scale the data as shown in:
        https://scikit-learn.org/stable/modules/preprocessing.html
    Please also refer to the documentation for alternative solver options:
        https://scikit-learn.org/stable/modules/linear_model.html#logistic-regression
      n_iter_i = _check_optimize_result(
    C:\Users\bbeee\anaconda3\lib\site-packages\sklearn\linear_model\_logistic.py:763: ConvergenceWarning: lbfgs failed to converge (status=1):
    STOP: TOTAL NO. of ITERATIONS REACHED LIMIT.
    
    Increase the number of iterations (max_iter) or scale the data as shown in:
        https://scikit-learn.org/stable/modules/preprocessing.html
    Please also refer to the documentation for alternative solver options:
        https://scikit-learn.org/stable/modules/linear_model.html#logistic-regression
      n_iter_i = _check_optimize_result(
    C:\Users\bbeee\anaconda3\lib\site-packages\sklearn\linear_model\_logistic.py:763: ConvergenceWarning: lbfgs failed to converge (status=1):
    STOP: TOTAL NO. of ITERATIONS REACHED LIMIT.
    
    Increase the number of iterations (max_iter) or scale the data as shown in:
        https://scikit-learn.org/stable/modules/preprocessing.html
    Please also refer to the documentation for alternative solver options:
        https://scikit-learn.org/stable/modules/linear_model.html#logistic-regression
      n_iter_i = _check_optimize_result(
    C:\Users\bbeee\anaconda3\lib\site-packages\sklearn\linear_model\_logistic.py:763: ConvergenceWarning: lbfgs failed to converge (status=1):
    STOP: TOTAL NO. of ITERATIONS REACHED LIMIT.
    
    Increase the number of iterations (max_iter) or scale the data as shown in:
        https://scikit-learn.org/stable/modules/preprocessing.html
    Please also refer to the documentation for alternative solver options:
        https://scikit-learn.org/stable/modules/linear_model.html#logistic-regression
      n_iter_i = _check_optimize_result(
    C:\Users\bbeee\anaconda3\lib\site-packages\sklearn\linear_model\_logistic.py:763: ConvergenceWarning: lbfgs failed to converge (status=1):
    STOP: TOTAL NO. of ITERATIONS REACHED LIMIT.
    
    Increase the number of iterations (max_iter) or scale the data as shown in:
        https://scikit-learn.org/stable/modules/preprocessing.html
    Please also refer to the documentation for alternative solver options:
        https://scikit-learn.org/stable/modules/linear_model.html#logistic-regression
      n_iter_i = _check_optimize_result(
    C:\Users\bbeee\anaconda3\lib\site-packages\sklearn\linear_model\_logistic.py:763: ConvergenceWarning: lbfgs failed to converge (status=1):
    STOP: TOTAL NO. of ITERATIONS REACHED LIMIT.
    
    Increase the number of iterations (max_iter) or scale the data as shown in:
        https://scikit-learn.org/stable/modules/preprocessing.html
    Please also refer to the documentation for alternative solver options:
        https://scikit-learn.org/stable/modules/linear_model.html#logistic-regression
      n_iter_i = _check_optimize_result(
    C:\Users\bbeee\anaconda3\lib\site-packages\sklearn\linear_model\_logistic.py:763: ConvergenceWarning: lbfgs failed to converge (status=1):
    STOP: TOTAL NO. of ITERATIONS REACHED LIMIT.
    
    Increase the number of iterations (max_iter) or scale the data as shown in:
        https://scikit-learn.org/stable/modules/preprocessing.html
    Please also refer to the documentation for alternative solver options:
        https://scikit-learn.org/stable/modules/linear_model.html#logistic-regression
      n_iter_i = _check_optimize_result(
    C:\Users\bbeee\anaconda3\lib\site-packages\sklearn\linear_model\_logistic.py:763: ConvergenceWarning: lbfgs failed to converge (status=1):
    STOP: TOTAL NO. of ITERATIONS REACHED LIMIT.
    
    Increase the number of iterations (max_iter) or scale the data as shown in:
        https://scikit-learn.org/stable/modules/preprocessing.html
    Please also refer to the documentation for alternative solver options:
        https://scikit-learn.org/stable/modules/linear_model.html#logistic-regression
      n_iter_i = _check_optimize_result(
    C:\Users\bbeee\anaconda3\lib\site-packages\sklearn\linear_model\_logistic.py:763: ConvergenceWarning: lbfgs failed to converge (status=1):
    STOP: TOTAL NO. of ITERATIONS REACHED LIMIT.
    
    Increase the number of iterations (max_iter) or scale the data as shown in:
        https://scikit-learn.org/stable/modules/preprocessing.html
    Please also refer to the documentation for alternative solver options:
        https://scikit-learn.org/stable/modules/linear_model.html#logistic-regression
      n_iter_i = _check_optimize_result(
    C:\Users\bbeee\anaconda3\lib\site-packages\sklearn\linear_model\_logistic.py:763: ConvergenceWarning: lbfgs failed to converge (status=1):
    STOP: TOTAL NO. of ITERATIONS REACHED LIMIT.
    
    Increase the number of iterations (max_iter) or scale the data as shown in:
        https://scikit-learn.org/stable/modules/preprocessing.html
    Please also refer to the documentation for alternative solver options:
        https://scikit-learn.org/stable/modules/linear_model.html#logistic-regression
      n_iter_i = _check_optimize_result(
    C:\Users\bbeee\anaconda3\lib\site-packages\sklearn\linear_model\_logistic.py:763: ConvergenceWarning: lbfgs failed to converge (status=1):
    STOP: TOTAL NO. of ITERATIONS REACHED LIMIT.
    
    Increase the number of iterations (max_iter) or scale the data as shown in:
        https://scikit-learn.org/stable/modules/preprocessing.html
    Please also refer to the documentation for alternative solver options:
        https://scikit-learn.org/stable/modules/linear_model.html#logistic-regression
      n_iter_i = _check_optimize_result(
    C:\Users\bbeee\anaconda3\lib\site-packages\sklearn\linear_model\_logistic.py:763: ConvergenceWarning: lbfgs failed to converge (status=1):
    STOP: TOTAL NO. of ITERATIONS REACHED LIMIT.
    
    Increase the number of iterations (max_iter) or scale the data as shown in:
        https://scikit-learn.org/stable/modules/preprocessing.html
    Please also refer to the documentation for alternative solver options:
        https://scikit-learn.org/stable/modules/linear_model.html#logistic-regression
      n_iter_i = _check_optimize_result(
    C:\Users\bbeee\anaconda3\lib\site-packages\sklearn\linear_model\_logistic.py:763: ConvergenceWarning: lbfgs failed to converge (status=1):
    STOP: TOTAL NO. of ITERATIONS REACHED LIMIT.
    
    Increase the number of iterations (max_iter) or scale the data as shown in:
        https://scikit-learn.org/stable/modules/preprocessing.html
    Please also refer to the documentation for alternative solver options:
        https://scikit-learn.org/stable/modules/linear_model.html#logistic-regression
      n_iter_i = _check_optimize_result(
    C:\Users\bbeee\anaconda3\lib\site-packages\sklearn\linear_model\_logistic.py:763: ConvergenceWarning: lbfgs failed to converge (status=1):
    STOP: TOTAL NO. of ITERATIONS REACHED LIMIT.
    
    Increase the number of iterations (max_iter) or scale the data as shown in:
        https://scikit-learn.org/stable/modules/preprocessing.html
    Please also refer to the documentation for alternative solver options:
        https://scikit-learn.org/stable/modules/linear_model.html#logistic-regression
      n_iter_i = _check_optimize_result(
    C:\Users\bbeee\anaconda3\lib\site-packages\sklearn\linear_model\_logistic.py:763: ConvergenceWarning: lbfgs failed to converge (status=1):
    STOP: TOTAL NO. of ITERATIONS REACHED LIMIT.
    
    Increase the number of iterations (max_iter) or scale the data as shown in:
        https://scikit-learn.org/stable/modules/preprocessing.html
    Please also refer to the documentation for alternative solver options:
        https://scikit-learn.org/stable/modules/linear_model.html#logistic-regression
      n_iter_i = _check_optimize_result(
    C:\Users\bbeee\anaconda3\lib\site-packages\sklearn\linear_model\_logistic.py:763: ConvergenceWarning: lbfgs failed to converge (status=1):
    STOP: TOTAL NO. of ITERATIONS REACHED LIMIT.
    
    Increase the number of iterations (max_iter) or scale the data as shown in:
        https://scikit-learn.org/stable/modules/preprocessing.html
    Please also refer to the documentation for alternative solver options:
        https://scikit-learn.org/stable/modules/linear_model.html#logistic-regression
      n_iter_i = _check_optimize_result(
    C:\Users\bbeee\anaconda3\lib\site-packages\sklearn\linear_model\_logistic.py:763: ConvergenceWarning: lbfgs failed to converge (status=1):
    STOP: TOTAL NO. of ITERATIONS REACHED LIMIT.
    
    Increase the number of iterations (max_iter) or scale the data as shown in:
        https://scikit-learn.org/stable/modules/preprocessing.html
    Please also refer to the documentation for alternative solver options:
        https://scikit-learn.org/stable/modules/linear_model.html#logistic-regression
      n_iter_i = _check_optimize_result(
    C:\Users\bbeee\anaconda3\lib\site-packages\sklearn\linear_model\_logistic.py:763: ConvergenceWarning: lbfgs failed to converge (status=1):
    STOP: TOTAL NO. of ITERATIONS REACHED LIMIT.
    
    Increase the number of iterations (max_iter) or scale the data as shown in:
        https://scikit-learn.org/stable/modules/preprocessing.html
    Please also refer to the documentation for alternative solver options:
        https://scikit-learn.org/stable/modules/linear_model.html#logistic-regression
      n_iter_i = _check_optimize_result(
    C:\Users\bbeee\anaconda3\lib\site-packages\sklearn\linear_model\_logistic.py:763: ConvergenceWarning: lbfgs failed to converge (status=1):
    STOP: TOTAL NO. of ITERATIONS REACHED LIMIT.
    
    Increase the number of iterations (max_iter) or scale the data as shown in:
        https://scikit-learn.org/stable/modules/preprocessing.html
    Please also refer to the documentation for alternative solver options:
        https://scikit-learn.org/stable/modules/linear_model.html#logistic-regression
      n_iter_i = _check_optimize_result(
    C:\Users\bbeee\anaconda3\lib\site-packages\sklearn\linear_model\_logistic.py:763: ConvergenceWarning: lbfgs failed to converge (status=1):
    STOP: TOTAL NO. of ITERATIONS REACHED LIMIT.
    
    Increase the number of iterations (max_iter) or scale the data as shown in:
        https://scikit-learn.org/stable/modules/preprocessing.html
    Please also refer to the documentation for alternative solver options:
        https://scikit-learn.org/stable/modules/linear_model.html#logistic-regression
      n_iter_i = _check_optimize_result(
    C:\Users\bbeee\anaconda3\lib\site-packages\sklearn\linear_model\_logistic.py:763: ConvergenceWarning: lbfgs failed to converge (status=1):
    STOP: TOTAL NO. of ITERATIONS REACHED LIMIT.
    
    Increase the number of iterations (max_iter) or scale the data as shown in:
        https://scikit-learn.org/stable/modules/preprocessing.html
    Please also refer to the documentation for alternative solver options:
        https://scikit-learn.org/stable/modules/linear_model.html#logistic-regression
      n_iter_i = _check_optimize_result(
    C:\Users\bbeee\anaconda3\lib\site-packages\sklearn\linear_model\_logistic.py:763: ConvergenceWarning: lbfgs failed to converge (status=1):
    STOP: TOTAL NO. of ITERATIONS REACHED LIMIT.
    
    Increase the number of iterations (max_iter) or scale the data as shown in:
        https://scikit-learn.org/stable/modules/preprocessing.html
    Please also refer to the documentation for alternative solver options:
        https://scikit-learn.org/stable/modules/linear_model.html#logistic-regression
      n_iter_i = _check_optimize_result(
    C:\Users\bbeee\anaconda3\lib\site-packages\sklearn\linear_model\_logistic.py:763: ConvergenceWarning: lbfgs failed to converge (status=1):
    STOP: TOTAL NO. of ITERATIONS REACHED LIMIT.
    
    Increase the number of iterations (max_iter) or scale the data as shown in:
        https://scikit-learn.org/stable/modules/preprocessing.html
    Please also refer to the documentation for alternative solver options:
        https://scikit-learn.org/stable/modules/linear_model.html#logistic-regression
      n_iter_i = _check_optimize_result(
    C:\Users\bbeee\anaconda3\lib\site-packages\sklearn\linear_model\_logistic.py:763: ConvergenceWarning: lbfgs failed to converge (status=1):
    STOP: TOTAL NO. of ITERATIONS REACHED LIMIT.
    
    Increase the number of iterations (max_iter) or scale the data as shown in:
        https://scikit-learn.org/stable/modules/preprocessing.html
    Please also refer to the documentation for alternative solver options:
        https://scikit-learn.org/stable/modules/linear_model.html#logistic-regression
      n_iter_i = _check_optimize_result(
    C:\Users\bbeee\anaconda3\lib\site-packages\sklearn\linear_model\_logistic.py:763: ConvergenceWarning: lbfgs failed to converge (status=1):
    STOP: TOTAL NO. of ITERATIONS REACHED LIMIT.
    
    Increase the number of iterations (max_iter) or scale the data as shown in:
        https://scikit-learn.org/stable/modules/preprocessing.html
    Please also refer to the documentation for alternative solver options:
        https://scikit-learn.org/stable/modules/linear_model.html#logistic-regression
      n_iter_i = _check_optimize_result(
    C:\Users\bbeee\anaconda3\lib\site-packages\sklearn\linear_model\_logistic.py:763: ConvergenceWarning: lbfgs failed to converge (status=1):
    STOP: TOTAL NO. of ITERATIONS REACHED LIMIT.
    
    Increase the number of iterations (max_iter) or scale the data as shown in:
        https://scikit-learn.org/stable/modules/preprocessing.html
    Please also refer to the documentation for alternative solver options:
        https://scikit-learn.org/stable/modules/linear_model.html#logistic-regression
      n_iter_i = _check_optimize_result(
    C:\Users\bbeee\anaconda3\lib\site-packages\sklearn\linear_model\_logistic.py:763: ConvergenceWarning: lbfgs failed to converge (status=1):
    STOP: TOTAL NO. of ITERATIONS REACHED LIMIT.
    
    Increase the number of iterations (max_iter) or scale the data as shown in:
        https://scikit-learn.org/stable/modules/preprocessing.html
    Please also refer to the documentation for alternative solver options:
        https://scikit-learn.org/stable/modules/linear_model.html#logistic-regression
      n_iter_i = _check_optimize_result(
    C:\Users\bbeee\anaconda3\lib\site-packages\sklearn\linear_model\_logistic.py:763: ConvergenceWarning: lbfgs failed to converge (status=1):
    STOP: TOTAL NO. of ITERATIONS REACHED LIMIT.
    
    Increase the number of iterations (max_iter) or scale the data as shown in:
        https://scikit-learn.org/stable/modules/preprocessing.html
    Please also refer to the documentation for alternative solver options:
        https://scikit-learn.org/stable/modules/linear_model.html#logistic-regression
      n_iter_i = _check_optimize_result(
    
     
    score = 
     [0.9370629370629371, 0.9300699300699301, 0.9300699300699301, 0.9300699300699301, 0.958041958041958, 0.9440559440559441, 0.958041958041958, 0.9440559440559441, 0.9300699300699301, 0.972027972027972, 0.9090909090909091, 0.9230769230769231, 0.965034965034965, 0.9440559440559441, 0.9440559440559441, 0.958041958041958, 0.951048951048951, 0.9440559440559441, 0.951048951048951, 0.951048951048951, 0.9440559440559441, 0.9300699300699301, 0.9370629370629371, 0.951048951048951, 0.951048951048951, 0.965034965034965, 0.965034965034965, 0.9440559440559441, 0.9790209790209791, 0.9090909090909091, 0.958041958041958, 0.916083916083916, 0.958041958041958, 0.9370629370629371, 0.9370629370629371, 0.951048951048951, 0.9230769230769231, 0.958041958041958, 0.965034965034965, 0.9440559440559441, 0.972027972027972, 0.951048951048951, 0.9440559440559441, 0.958041958041958, 0.972027972027972, 0.951048951048951, 0.9300699300699301, 0.9440559440559441, 0.972027972027972, 0.9440559440559441, 0.951048951048951, 0.9440559440559441, 0.9300699300699301, 0.916083916083916, 0.9300699300699301, 0.972027972027972, 0.9440559440559441, 0.9440559440559441, 0.9230769230769231, 0.965034965034965, 0.9230769230769231, 0.9370629370629371, 0.9370629370629371, 0.958041958041958, 0.9300699300699301, 0.9300699300699301, 0.972027972027972, 0.951048951048951, 0.916083916083916, 0.9230769230769231, 0.965034965034965, 0.958041958041958, 0.958041958041958, 0.9300699300699301, 0.951048951048951, 0.972027972027972, 0.9230769230769231, 0.951048951048951, 0.9370629370629371, 0.916083916083916, 0.9230769230769231, 0.916083916083916, 0.951048951048951, 0.951048951048951, 0.9370629370629371, 0.9440559440559441, 0.9440559440559441, 0.9370629370629371, 0.951048951048951, 0.9440559440559441, 0.951048951048951, 0.972027972027972, 0.972027972027972, 0.958041958041958, 0.9300699300699301, 0.9440559440559441, 0.9370629370629371, 0.916083916083916, 0.9370629370629371, 0.965034965034965]
    
     
    C:\Users\bbeee\anaconda3\lib\site-packages\sklearn\linear_model\_logistic.py:763: ConvergenceWarning: lbfgs failed to converge (status=1):
    STOP: TOTAL NO. of ITERATIONS REACHED LIMIT.
    
    Increase the number of iterations (max_iter) or scale the data as shown in:
        https://scikit-learn.org/stable/modules/preprocessing.html
    Please also refer to the documentation for alternative solver options:
        https://scikit-learn.org/stable/modules/linear_model.html#logistic-regression
      n_iter_i = _check_optimize_result(
    C:\Users\bbeee\anaconda3\lib\site-packages\sklearn\linear_model\_logistic.py:763: ConvergenceWarning: lbfgs failed to converge (status=1):
    STOP: TOTAL NO. of ITERATIONS REACHED LIMIT.
    
    Increase the number of iterations (max_iter) or scale the data as shown in:
        https://scikit-learn.org/stable/modules/preprocessing.html
    Please also refer to the documentation for alternative solver options:
        https://scikit-learn.org/stable/modules/linear_model.html#logistic-regression
      n_iter_i = _check_optimize_result(
    C:\Users\bbeee\anaconda3\lib\site-packages\sklearn\linear_model\_logistic.py:763: ConvergenceWarning: lbfgs failed to converge (status=1):
    STOP: TOTAL NO. of ITERATIONS REACHED LIMIT.
    
    Increase the number of iterations (max_iter) or scale the data as shown in:
        https://scikit-learn.org/stable/modules/preprocessing.html
    Please also refer to the documentation for alternative solver options:
        https://scikit-learn.org/stable/modules/linear_model.html#logistic-regression
      n_iter_i = _check_optimize_result(
    C:\Users\bbeee\anaconda3\lib\site-packages\sklearn\linear_model\_logistic.py:763: ConvergenceWarning: lbfgs failed to converge (status=1):
    STOP: TOTAL NO. of ITERATIONS REACHED LIMIT.
    
    Increase the number of iterations (max_iter) or scale the data as shown in:
        https://scikit-learn.org/stable/modules/preprocessing.html
    Please also refer to the documentation for alternative solver options:
        https://scikit-learn.org/stable/modules/linear_model.html#logistic-regression
      n_iter_i = _check_optimize_result(
    
    In [37]:
    from sklearn.svm import LinearSVC
    
    score = []
    
    for i in range(100):
        X_train, X_test, y_train, y_test = train_test_split(cancer.data, cancer.target)
    
        model = LinearSVC()
        model.fit(X_train, y_train)
    
        sc = model.score(X_test, y_test)
        score.append(sc)
    
    print('score : \n', score)  
    
     
    C:\Users\bbeee\anaconda3\lib\site-packages\sklearn\svm\_base.py:985: ConvergenceWarning: Liblinear failed to converge, increase the number of iterations.
      warnings.warn("Liblinear failed to converge, increase "
    C:\Users\bbeee\anaconda3\lib\site-packages\sklearn\svm\_base.py:985: ConvergenceWarning: Liblinear failed to converge, increase the number of iterations.
      warnings.warn("Liblinear failed to converge, increase "
    C:\Users\bbeee\anaconda3\lib\site-packages\sklearn\svm\_base.py:985: ConvergenceWarning: Liblinear failed to converge, increase the number of iterations.
      warnings.warn("Liblinear failed to converge, increase "
    C:\Users\bbeee\anaconda3\lib\site-packages\sklearn\svm\_base.py:985: ConvergenceWarning: Liblinear failed to converge, increase the number of iterations.
      warnings.warn("Liblinear failed to converge, increase "
    C:\Users\bbeee\anaconda3\lib\site-packages\sklearn\svm\_base.py:985: ConvergenceWarning: Liblinear failed to converge, increase the number of iterations.
      warnings.warn("Liblinear failed to converge, increase "
    C:\Users\bbeee\anaconda3\lib\site-packages\sklearn\svm\_base.py:985: ConvergenceWarning: Liblinear failed to converge, increase the number of iterations.
      warnings.warn("Liblinear failed to converge, increase "
    C:\Users\bbeee\anaconda3\lib\site-packages\sklearn\svm\_base.py:985: ConvergenceWarning: Liblinear failed to converge, increase the number of iterations.
      warnings.warn("Liblinear failed to converge, increase "
    C:\Users\bbeee\anaconda3\lib\site-packages\sklearn\svm\_base.py:985: ConvergenceWarning: Liblinear failed to converge, increase the number of iterations.
      warnings.warn("Liblinear failed to converge, increase "
    C:\Users\bbeee\anaconda3\lib\site-packages\sklearn\svm\_base.py:985: ConvergenceWarning: Liblinear failed to converge, increase the number of iterations.
      warnings.warn("Liblinear failed to converge, increase "
    C:\Users\bbeee\anaconda3\lib\site-packages\sklearn\svm\_base.py:985: ConvergenceWarning: Liblinear failed to converge, increase the number of iterations.
      warnings.warn("Liblinear failed to converge, increase "
    C:\Users\bbeee\anaconda3\lib\site-packages\sklearn\svm\_base.py:985: ConvergenceWarning: Liblinear failed to converge, increase the number of iterations.
      warnings.warn("Liblinear failed to converge, increase "
    C:\Users\bbeee\anaconda3\lib\site-packages\sklearn\svm\_base.py:985: ConvergenceWarning: Liblinear failed to converge, increase the number of iterations.
      warnings.warn("Liblinear failed to converge, increase "
    C:\Users\bbeee\anaconda3\lib\site-packages\sklearn\svm\_base.py:985: ConvergenceWarning: Liblinear failed to converge, increase the number of iterations.
      warnings.warn("Liblinear failed to converge, increase "
    C:\Users\bbeee\anaconda3\lib\site-packages\sklearn\svm\_base.py:985: ConvergenceWarning: Liblinear failed to converge, increase the number of iterations.
      warnings.warn("Liblinear failed to converge, increase "
    C:\Users\bbeee\anaconda3\lib\site-packages\sklearn\svm\_base.py:985: ConvergenceWarning: Liblinear failed to converge, increase the number of iterations.
      warnings.warn("Liblinear failed to converge, increase "
    C:\Users\bbeee\anaconda3\lib\site-packages\sklearn\svm\_base.py:985: ConvergenceWarning: Liblinear failed to converge, increase the number of iterations.
      warnings.warn("Liblinear failed to converge, increase "
    C:\Users\bbeee\anaconda3\lib\site-packages\sklearn\svm\_base.py:985: ConvergenceWarning: Liblinear failed to converge, increase the number of iterations.
      warnings.warn("Liblinear failed to converge, increase "
    C:\Users\bbeee\anaconda3\lib\site-packages\sklearn\svm\_base.py:985: ConvergenceWarning: Liblinear failed to converge, increase the number of iterations.
      warnings.warn("Liblinear failed to converge, increase "
    C:\Users\bbeee\anaconda3\lib\site-packages\sklearn\svm\_base.py:985: ConvergenceWarning: Liblinear failed to converge, increase the number of iterations.
      warnings.warn("Liblinear failed to converge, increase "
    C:\Users\bbeee\anaconda3\lib\site-packages\sklearn\svm\_base.py:985: ConvergenceWarning: Liblinear failed to converge, increase the number of iterations.
      warnings.warn("Liblinear failed to converge, increase "
    C:\Users\bbeee\anaconda3\lib\site-packages\sklearn\svm\_base.py:985: ConvergenceWarning: Liblinear failed to converge, increase the number of iterations.
      warnings.warn("Liblinear failed to converge, increase "
    C:\Users\bbeee\anaconda3\lib\site-packages\sklearn\svm\_base.py:985: ConvergenceWarning: Liblinear failed to converge, increase the number of iterations.
      warnings.warn("Liblinear failed to converge, increase "
    C:\Users\bbeee\anaconda3\lib\site-packages\sklearn\svm\_base.py:985: ConvergenceWarning: Liblinear failed to converge, increase the number of iterations.
      warnings.warn("Liblinear failed to converge, increase "
    C:\Users\bbeee\anaconda3\lib\site-packages\sklearn\svm\_base.py:985: ConvergenceWarning: Liblinear failed to converge, increase the number of iterations.
      warnings.warn("Liblinear failed to converge, increase "
    C:\Users\bbeee\anaconda3\lib\site-packages\sklearn\svm\_base.py:985: ConvergenceWarning: Liblinear failed to converge, increase the number of iterations.
      warnings.warn("Liblinear failed to converge, increase "
    C:\Users\bbeee\anaconda3\lib\site-packages\sklearn\svm\_base.py:985: ConvergenceWarning: Liblinear failed to converge, increase the number of iterations.
      warnings.warn("Liblinear failed to converge, increase "
    C:\Users\bbeee\anaconda3\lib\site-packages\sklearn\svm\_base.py:985: ConvergenceWarning: Liblinear failed to converge, increase the number of iterations.
      warnings.warn("Liblinear failed to converge, increase "
    C:\Users\bbeee\anaconda3\lib\site-packages\sklearn\svm\_base.py:985: ConvergenceWarning: Liblinear failed to converge, increase the number of iterations.
      warnings.warn("Liblinear failed to converge, increase "
    C:\Users\bbeee\anaconda3\lib\site-packages\sklearn\svm\_base.py:985: ConvergenceWarning: Liblinear failed to converge, increase the number of iterations.
      warnings.warn("Liblinear failed to converge, increase "
    C:\Users\bbeee\anaconda3\lib\site-packages\sklearn\svm\_base.py:985: ConvergenceWarning: Liblinear failed to converge, increase the number of iterations.
      warnings.warn("Liblinear failed to converge, increase "
    C:\Users\bbeee\anaconda3\lib\site-packages\sklearn\svm\_base.py:985: ConvergenceWarning: Liblinear failed to converge, increase the number of iterations.
      warnings.warn("Liblinear failed to converge, increase "
    C:\Users\bbeee\anaconda3\lib\site-packages\sklearn\svm\_base.py:985: ConvergenceWarning: Liblinear failed to converge, increase the number of iterations.
      warnings.warn("Liblinear failed to converge, increase "
    C:\Users\bbeee\anaconda3\lib\site-packages\sklearn\svm\_base.py:985: ConvergenceWarning: Liblinear failed to converge, increase the number of iterations.
      warnings.warn("Liblinear failed to converge, increase "
    C:\Users\bbeee\anaconda3\lib\site-packages\sklearn\svm\_base.py:985: ConvergenceWarning: Liblinear failed to converge, increase the number of iterations.
      warnings.warn("Liblinear failed to converge, increase "
    C:\Users\bbeee\anaconda3\lib\site-packages\sklearn\svm\_base.py:985: ConvergenceWarning: Liblinear failed to converge, increase the number of iterations.
      warnings.warn("Liblinear failed to converge, increase "
    C:\Users\bbeee\anaconda3\lib\site-packages\sklearn\svm\_base.py:985: ConvergenceWarning: Liblinear failed to converge, increase the number of iterations.
      warnings.warn("Liblinear failed to converge, increase "
    C:\Users\bbeee\anaconda3\lib\site-packages\sklearn\svm\_base.py:985: ConvergenceWarning: Liblinear failed to converge, increase the number of iterations.
      warnings.warn("Liblinear failed to converge, increase "
    C:\Users\bbeee\anaconda3\lib\site-packages\sklearn\svm\_base.py:985: ConvergenceWarning: Liblinear failed to converge, increase the number of iterations.
      warnings.warn("Liblinear failed to converge, increase "
    C:\Users\bbeee\anaconda3\lib\site-packages\sklearn\svm\_base.py:985: ConvergenceWarning: Liblinear failed to converge, increase the number of iterations.
      warnings.warn("Liblinear failed to converge, increase "
    C:\Users\bbeee\anaconda3\lib\site-packages\sklearn\svm\_base.py:985: ConvergenceWarning: Liblinear failed to converge, increase the number of iterations.
      warnings.warn("Liblinear failed to converge, increase "
    C:\Users\bbeee\anaconda3\lib\site-packages\sklearn\svm\_base.py:985: ConvergenceWarning: Liblinear failed to converge, increase the number of iterations.
      warnings.warn("Liblinear failed to converge, increase "
    C:\Users\bbeee\anaconda3\lib\site-packages\sklearn\svm\_base.py:985: ConvergenceWarning: Liblinear failed to converge, increase the number of iterations.
      warnings.warn("Liblinear failed to converge, increase "
    C:\Users\bbeee\anaconda3\lib\site-packages\sklearn\svm\_base.py:985: ConvergenceWarning: Liblinear failed to converge, increase the number of iterations.
      warnings.warn("Liblinear failed to converge, increase "
    C:\Users\bbeee\anaconda3\lib\site-packages\sklearn\svm\_base.py:985: ConvergenceWarning: Liblinear failed to converge, increase the number of iterations.
      warnings.warn("Liblinear failed to converge, increase "
    C:\Users\bbeee\anaconda3\lib\site-packages\sklearn\svm\_base.py:985: ConvergenceWarning: Liblinear failed to converge, increase the number of iterations.
      warnings.warn("Liblinear failed to converge, increase "
    C:\Users\bbeee\anaconda3\lib\site-packages\sklearn\svm\_base.py:985: ConvergenceWarning: Liblinear failed to converge, increase the number of iterations.
      warnings.warn("Liblinear failed to converge, increase "
    C:\Users\bbeee\anaconda3\lib\site-packages\sklearn\svm\_base.py:985: ConvergenceWarning: Liblinear failed to converge, increase the number of iterations.
      warnings.warn("Liblinear failed to converge, increase "
    C:\Users\bbeee\anaconda3\lib\site-packages\sklearn\svm\_base.py:985: ConvergenceWarning: Liblinear failed to converge, increase the number of iterations.
      warnings.warn("Liblinear failed to converge, increase "
    C:\Users\bbeee\anaconda3\lib\site-packages\sklearn\svm\_base.py:985: ConvergenceWarning: Liblinear failed to converge, increase the number of iterations.
      warnings.warn("Liblinear failed to converge, increase "
    C:\Users\bbeee\anaconda3\lib\site-packages\sklearn\svm\_base.py:985: ConvergenceWarning: Liblinear failed to converge, increase the number of iterations.
      warnings.warn("Liblinear failed to converge, increase "
    C:\Users\bbeee\anaconda3\lib\site-packages\sklearn\svm\_base.py:985: ConvergenceWarning: Liblinear failed to converge, increase the number of iterations.
      warnings.warn("Liblinear failed to converge, increase "
    C:\Users\bbeee\anaconda3\lib\site-packages\sklearn\svm\_base.py:985: ConvergenceWarning: Liblinear failed to converge, increase the number of iterations.
      warnings.warn("Liblinear failed to converge, increase "
    C:\Users\bbeee\anaconda3\lib\site-packages\sklearn\svm\_base.py:985: ConvergenceWarning: Liblinear failed to converge, increase the number of iterations.
      warnings.warn("Liblinear failed to converge, increase "
    C:\Users\bbeee\anaconda3\lib\site-packages\sklearn\svm\_base.py:985: ConvergenceWarning: Liblinear failed to converge, increase the number of iterations.
      warnings.warn("Liblinear failed to converge, increase "
    C:\Users\bbeee\anaconda3\lib\site-packages\sklearn\svm\_base.py:985: ConvergenceWarning: Liblinear failed to converge, increase the number of iterations.
      warnings.warn("Liblinear failed to converge, increase "
    C:\Users\bbeee\anaconda3\lib\site-packages\sklearn\svm\_base.py:985: ConvergenceWarning: Liblinear failed to converge, increase the number of iterations.
      warnings.warn("Liblinear failed to converge, increase "
    C:\Users\bbeee\anaconda3\lib\site-packages\sklearn\svm\_base.py:985: ConvergenceWarning: Liblinear failed to converge, increase the number of iterations.
      warnings.warn("Liblinear failed to converge, increase "
    C:\Users\bbeee\anaconda3\lib\site-packages\sklearn\svm\_base.py:985: ConvergenceWarning: Liblinear failed to converge, increase the number of iterations.
      warnings.warn("Liblinear failed to converge, increase "
    C:\Users\bbeee\anaconda3\lib\site-packages\sklearn\svm\_base.py:985: ConvergenceWarning: Liblinear failed to converge, increase the number of iterations.
      warnings.warn("Liblinear failed to converge, increase "
    C:\Users\bbeee\anaconda3\lib\site-packages\sklearn\svm\_base.py:985: ConvergenceWarning: Liblinear failed to converge, increase the number of iterations.
      warnings.warn("Liblinear failed to converge, increase "
    C:\Users\bbeee\anaconda3\lib\site-packages\sklearn\svm\_base.py:985: ConvergenceWarning: Liblinear failed to converge, increase the number of iterations.
      warnings.warn("Liblinear failed to converge, increase "
    C:\Users\bbeee\anaconda3\lib\site-packages\sklearn\svm\_base.py:985: ConvergenceWarning: Liblinear failed to converge, increase the number of iterations.
      warnings.warn("Liblinear failed to converge, increase "
    C:\Users\bbeee\anaconda3\lib\site-packages\sklearn\svm\_base.py:985: ConvergenceWarning: Liblinear failed to converge, increase the number of iterations.
      warnings.warn("Liblinear failed to converge, increase "
    C:\Users\bbeee\anaconda3\lib\site-packages\sklearn\svm\_base.py:985: ConvergenceWarning: Liblinear failed to converge, increase the number of iterations.
      warnings.warn("Liblinear failed to converge, increase "
    C:\Users\bbeee\anaconda3\lib\site-packages\sklearn\svm\_base.py:985: ConvergenceWarning: Liblinear failed to converge, increase the number of iterations.
      warnings.warn("Liblinear failed to converge, increase "
    C:\Users\bbeee\anaconda3\lib\site-packages\sklearn\svm\_base.py:985: ConvergenceWarning: Liblinear failed to converge, increase the number of iterations.
      warnings.warn("Liblinear failed to converge, increase "
    C:\Users\bbeee\anaconda3\lib\site-packages\sklearn\svm\_base.py:985: ConvergenceWarning: Liblinear failed to converge, increase the number of iterations.
      warnings.warn("Liblinear failed to converge, increase "
    C:\Users\bbeee\anaconda3\lib\site-packages\sklearn\svm\_base.py:985: ConvergenceWarning: Liblinear failed to converge, increase the number of iterations.
      warnings.warn("Liblinear failed to converge, increase "
    C:\Users\bbeee\anaconda3\lib\site-packages\sklearn\svm\_base.py:985: ConvergenceWarning: Liblinear failed to converge, increase the number of iterations.
      warnings.warn("Liblinear failed to converge, increase "
    C:\Users\bbeee\anaconda3\lib\site-packages\sklearn\svm\_base.py:985: ConvergenceWarning: Liblinear failed to converge, increase the number of iterations.
      warnings.warn("Liblinear failed to converge, increase "
    C:\Users\bbeee\anaconda3\lib\site-packages\sklearn\svm\_base.py:985: ConvergenceWarning: Liblinear failed to converge, increase the number of iterations.
      warnings.warn("Liblinear failed to converge, increase "
    C:\Users\bbeee\anaconda3\lib\site-packages\sklearn\svm\_base.py:985: ConvergenceWarning: Liblinear failed to converge, increase the number of iterations.
      warnings.warn("Liblinear failed to converge, increase "
    C:\Users\bbeee\anaconda3\lib\site-packages\sklearn\svm\_base.py:985: ConvergenceWarning: Liblinear failed to converge, increase the number of iterations.
      warnings.warn("Liblinear failed to converge, increase "
    C:\Users\bbeee\anaconda3\lib\site-packages\sklearn\svm\_base.py:985: ConvergenceWarning: Liblinear failed to converge, increase the number of iterations.
      warnings.warn("Liblinear failed to converge, increase "
    C:\Users\bbeee\anaconda3\lib\site-packages\sklearn\svm\_base.py:985: ConvergenceWarning: Liblinear failed to converge, increase the number of iterations.
      warnings.warn("Liblinear failed to converge, increase "
    C:\Users\bbeee\anaconda3\lib\site-packages\sklearn\svm\_base.py:985: ConvergenceWarning: Liblinear failed to converge, increase the number of iterations.
      warnings.warn("Liblinear failed to converge, increase "
    C:\Users\bbeee\anaconda3\lib\site-packages\sklearn\svm\_base.py:985: ConvergenceWarning: Liblinear failed to converge, increase the number of iterations.
      warnings.warn("Liblinear failed to converge, increase "
    C:\Users\bbeee\anaconda3\lib\site-packages\sklearn\svm\_base.py:985: ConvergenceWarning: Liblinear failed to converge, increase the number of iterations.
      warnings.warn("Liblinear failed to converge, increase "
    C:\Users\bbeee\anaconda3\lib\site-packages\sklearn\svm\_base.py:985: ConvergenceWarning: Liblinear failed to converge, increase the number of iterations.
      warnings.warn("Liblinear failed to converge, increase "
    C:\Users\bbeee\anaconda3\lib\site-packages\sklearn\svm\_base.py:985: ConvergenceWarning: Liblinear failed to converge, increase the number of iterations.
      warnings.warn("Liblinear failed to converge, increase "
    C:\Users\bbeee\anaconda3\lib\site-packages\sklearn\svm\_base.py:985: ConvergenceWarning: Liblinear failed to converge, increase the number of iterations.
      warnings.warn("Liblinear failed to converge, increase "
    C:\Users\bbeee\anaconda3\lib\site-packages\sklearn\svm\_base.py:985: ConvergenceWarning: Liblinear failed to converge, increase the number of iterations.
      warnings.warn("Liblinear failed to converge, increase "
    C:\Users\bbeee\anaconda3\lib\site-packages\sklearn\svm\_base.py:985: ConvergenceWarning: Liblinear failed to converge, increase the number of iterations.
      warnings.warn("Liblinear failed to converge, increase "
    C:\Users\bbeee\anaconda3\lib\site-packages\sklearn\svm\_base.py:985: ConvergenceWarning: Liblinear failed to converge, increase the number of iterations.
      warnings.warn("Liblinear failed to converge, increase "
    C:\Users\bbeee\anaconda3\lib\site-packages\sklearn\svm\_base.py:985: ConvergenceWarning: Liblinear failed to converge, increase the number of iterations.
      warnings.warn("Liblinear failed to converge, increase "
    C:\Users\bbeee\anaconda3\lib\site-packages\sklearn\svm\_base.py:985: ConvergenceWarning: Liblinear failed to converge, increase the number of iterations.
      warnings.warn("Liblinear failed to converge, increase "
    C:\Users\bbeee\anaconda3\lib\site-packages\sklearn\svm\_base.py:985: ConvergenceWarning: Liblinear failed to converge, increase the number of iterations.
      warnings.warn("Liblinear failed to converge, increase "
    C:\Users\bbeee\anaconda3\lib\site-packages\sklearn\svm\_base.py:985: ConvergenceWarning: Liblinear failed to converge, increase the number of iterations.
      warnings.warn("Liblinear failed to converge, increase "
    C:\Users\bbeee\anaconda3\lib\site-packages\sklearn\svm\_base.py:985: ConvergenceWarning: Liblinear failed to converge, increase the number of iterations.
      warnings.warn("Liblinear failed to converge, increase "
    C:\Users\bbeee\anaconda3\lib\site-packages\sklearn\svm\_base.py:985: ConvergenceWarning: Liblinear failed to converge, increase the number of iterations.
      warnings.warn("Liblinear failed to converge, increase "
    C:\Users\bbeee\anaconda3\lib\site-packages\sklearn\svm\_base.py:985: ConvergenceWarning: Liblinear failed to converge, increase the number of iterations.
      warnings.warn("Liblinear failed to converge, increase "
    C:\Users\bbeee\anaconda3\lib\site-packages\sklearn\svm\_base.py:985: ConvergenceWarning: Liblinear failed to converge, increase the number of iterations.
      warnings.warn("Liblinear failed to converge, increase "
    C:\Users\bbeee\anaconda3\lib\site-packages\sklearn\svm\_base.py:985: ConvergenceWarning: Liblinear failed to converge, increase the number of iterations.
      warnings.warn("Liblinear failed to converge, increase "
    C:\Users\bbeee\anaconda3\lib\site-packages\sklearn\svm\_base.py:985: ConvergenceWarning: Liblinear failed to converge, increase the number of iterations.
      warnings.warn("Liblinear failed to converge, increase "
    C:\Users\bbeee\anaconda3\lib\site-packages\sklearn\svm\_base.py:985: ConvergenceWarning: Liblinear failed to converge, increase the number of iterations.
      warnings.warn("Liblinear failed to converge, increase "
    C:\Users\bbeee\anaconda3\lib\site-packages\sklearn\svm\_base.py:985: ConvergenceWarning: Liblinear failed to converge, increase the number of iterations.
      warnings.warn("Liblinear failed to converge, increase "
    C:\Users\bbeee\anaconda3\lib\site-packages\sklearn\svm\_base.py:985: ConvergenceWarning: Liblinear failed to converge, increase the number of iterations.
      warnings.warn("Liblinear failed to converge, increase "
    
     
    score : 
     [0.8811188811188811, 0.7692307692307693, 0.9370629370629371, 0.9230769230769231, 0.8951048951048951, 0.6223776223776224, 0.958041958041958, 0.9230769230769231, 0.9370629370629371, 0.9090909090909091, 0.9370629370629371, 0.8741258741258742, 0.8531468531468531, 0.9230769230769231, 0.6293706293706294, 0.951048951048951, 0.9300699300699301, 0.951048951048951, 0.9090909090909091, 0.8741258741258742, 0.916083916083916, 0.9370629370629371, 0.8601398601398601, 0.916083916083916, 0.951048951048951, 0.6433566433566433, 0.8671328671328671, 0.9020979020979021, 0.9230769230769231, 0.9440559440559441, 0.8881118881118881, 0.9300699300699301, 0.9370629370629371, 0.8951048951048951, 0.9230769230769231, 0.9230769230769231, 0.9370629370629371, 0.3986013986013986, 0.951048951048951, 0.8321678321678322, 0.8811188811188811, 0.9440559440559441, 0.9020979020979021, 0.9370629370629371, 0.8671328671328671, 0.8811188811188811, 0.9230769230769231, 0.7972027972027972, 0.6923076923076923, 0.9230769230769231, 0.965034965034965, 0.9440559440559441, 0.9090909090909091, 0.972027972027972, 0.9370629370629371, 0.9230769230769231, 0.951048951048951, 0.7342657342657343, 0.9230769230769231, 0.951048951048951, 0.9020979020979021, 0.916083916083916, 0.9020979020979021, 0.9230769230769231, 0.8881118881118881, 0.8531468531468531, 0.965034965034965, 0.916083916083916, 0.8951048951048951, 0.9440559440559441, 0.8881118881118881, 0.916083916083916, 0.8951048951048951, 0.9020979020979021, 0.8951048951048951, 0.8741258741258742, 0.9300699300699301, 0.9440559440559441, 0.8671328671328671, 0.9090909090909091, 0.9090909090909091, 0.8951048951048951, 0.8391608391608392, 0.8741258741258742, 0.9090909090909091, 0.916083916083916, 0.916083916083916, 0.9230769230769231, 0.9090909090909091, 0.9300699300699301, 0.8811188811188811, 0.9370629370629371, 0.9370629370629371, 0.8951048951048951, 0.7762237762237763, 0.8741258741258742, 0.7412587412587412, 0.9300699300699301, 0.9370629370629371, 0.9300699300699301]
    
     
    C:\Users\bbeee\anaconda3\lib\site-packages\sklearn\svm\_base.py:985: ConvergenceWarning: Liblinear failed to converge, increase the number of iterations.
      warnings.warn("Liblinear failed to converge, increase "
    C:\Users\bbeee\anaconda3\lib\site-packages\sklearn\svm\_base.py:985: ConvergenceWarning: Liblinear failed to converge, increase the number of iterations.
      warnings.warn("Liblinear failed to converge, increase "
    C:\Users\bbeee\anaconda3\lib\site-packages\sklearn\svm\_base.py:985: ConvergenceWarning: Liblinear failed to converge, increase the number of iterations.
      warnings.warn("Liblinear failed to converge, increase "
    
    In [38]:
    fig = plt.figure(figsize=[14,14])
    fig.suptitle("์œ ๋ฐฉ์•” - ์†์„ฑ๋“ค๊ฐ„์˜ ๋ถ„์„ ์‹œํ–‰", fontsize =25)
    
    for col in range(cancer.feature_names.shape[0]):
        plt.subplot(8,4,col+1)
    
        _, bins = np.histogram(cancer.data[:,col], bins=30)
        plt.hist(malignant[:,col], bins=bins, alpha = 0.4, label='malignant', color = 'red')
        plt.hist(benign[:,col], bins=bins, alpha = 0.4, label = 'benign', color = 'blue')
        plt.title(cancer.feature_names[col]+('%d ๋ฒˆ์งธ ์†์„ฑ ' % col))
        plt.xticks([])
        plt.yticks([])
        if col ==0:
            plt.legend()
    
     
    C:\Users\bbeee\anaconda3\lib\site-packages\matplotlib\backends\backend_agg.py:238: RuntimeWarning: Glyph 48264 missing from current font.
      font.set_text(s, 0.0, flags=flags)
    C:\Users\bbeee\anaconda3\lib\site-packages\matplotlib\backends\backend_agg.py:238: RuntimeWarning: Glyph 51704 missing from current font.
      font.set_text(s, 0.0, flags=flags)
    C:\Users\bbeee\anaconda3\lib\site-packages\matplotlib\backends\backend_agg.py:238: RuntimeWarning: Glyph 49549 missing from current font.
      font.set_text(s, 0.0, flags=flags)
    C:\Users\bbeee\anaconda3\lib\site-packages\matplotlib\backends\backend_agg.py:238: RuntimeWarning: Glyph 49457 missing from current font.
      font.set_text(s, 0.0, flags=flags)
    C:\Users\bbeee\anaconda3\lib\site-packages\matplotlib\backends\backend_agg.py:238: RuntimeWarning: Glyph 50976 missing from current font.
      font.set_text(s, 0.0, flags=flags)
    C:\Users\bbeee\anaconda3\lib\site-packages\matplotlib\backends\backend_agg.py:238: RuntimeWarning: Glyph 48169 missing from current font.
      font.set_text(s, 0.0, flags=flags)
    C:\Users\bbeee\anaconda3\lib\site-packages\matplotlib\backends\backend_agg.py:238: RuntimeWarning: Glyph 50516 missing from current font.
      font.set_text(s, 0.0, flags=flags)
    C:\Users\bbeee\anaconda3\lib\site-packages\matplotlib\backends\backend_agg.py:238: RuntimeWarning: Glyph 46308 missing from current font.
      font.set_text(s, 0.0, flags=flags)
    C:\Users\bbeee\anaconda3\lib\site-packages\matplotlib\backends\backend_agg.py:238: RuntimeWarning: Glyph 44036 missing from current font.
      font.set_text(s, 0.0, flags=flags)
    C:\Users\bbeee\anaconda3\lib\site-packages\matplotlib\backends\backend_agg.py:238: RuntimeWarning: Glyph 51032 missing from current font.
      font.set_text(s, 0.0, flags=flags)
    C:\Users\bbeee\anaconda3\lib\site-packages\matplotlib\backends\backend_agg.py:238: RuntimeWarning: Glyph 48516 missing from current font.
      font.set_text(s, 0.0, flags=flags)
    C:\Users\bbeee\anaconda3\lib\site-packages\matplotlib\backends\backend_agg.py:238: RuntimeWarning: Glyph 49437 missing from current font.
      font.set_text(s, 0.0, flags=flags)
    C:\Users\bbeee\anaconda3\lib\site-packages\matplotlib\backends\backend_agg.py:238: RuntimeWarning: Glyph 49884 missing from current font.
      font.set_text(s, 0.0, flags=flags)
    C:\Users\bbeee\anaconda3\lib\site-packages\matplotlib\backends\backend_agg.py:238: RuntimeWarning: Glyph 54665 missing from current font.
      font.set_text(s, 0.0, flags=flags)
    C:\Users\bbeee\anaconda3\lib\site-packages\matplotlib\backends\backend_agg.py:201: RuntimeWarning: Glyph 48264 missing from current font.
      font.set_text(s, 0, flags=flags)
    C:\Users\bbeee\anaconda3\lib\site-packages\matplotlib\backends\backend_agg.py:201: RuntimeWarning: Glyph 51704 missing from current font.
      font.set_text(s, 0, flags=flags)
    C:\Users\bbeee\anaconda3\lib\site-packages\matplotlib\backends\backend_agg.py:201: RuntimeWarning: Glyph 49549 missing from current font.
      font.set_text(s, 0, flags=flags)
    C:\Users\bbeee\anaconda3\lib\site-packages\matplotlib\backends\backend_agg.py:201: RuntimeWarning: Glyph 49457 missing from current font.
      font.set_text(s, 0, flags=flags)
    C:\Users\bbeee\anaconda3\lib\site-packages\matplotlib\backends\backend_agg.py:201: RuntimeWarning: Glyph 50976 missing from current font.
      font.set_text(s, 0, flags=flags)
    C:\Users\bbeee\anaconda3\lib\site-packages\matplotlib\backends\backend_agg.py:201: RuntimeWarning: Glyph 48169 missing from current font.
      font.set_text(s, 0, flags=flags)
    C:\Users\bbeee\anaconda3\lib\site-packages\matplotlib\backends\backend_agg.py:201: RuntimeWarning: Glyph 50516 missing from current font.
      font.set_text(s, 0, flags=flags)
    C:\Users\bbeee\anaconda3\lib\site-packages\matplotlib\backends\backend_agg.py:201: RuntimeWarning: Glyph 46308 missing from current font.
      font.set_text(s, 0, flags=flags)
    C:\Users\bbeee\anaconda3\lib\site-packages\matplotlib\backends\backend_agg.py:201: RuntimeWarning: Glyph 44036 missing from current font.
      font.set_text(s, 0, flags=flags)
    C:\Users\bbeee\anaconda3\lib\site-packages\matplotlib\backends\backend_agg.py:201: RuntimeWarning: Glyph 51032 missing from current font.
      font.set_text(s, 0, flags=flags)
    C:\Users\bbeee\anaconda3\lib\site-packages\matplotlib\backends\backend_agg.py:201: RuntimeWarning: Glyph 48516 missing from current font.
      font.set_text(s, 0, flags=flags)
    C:\Users\bbeee\anaconda3\lib\site-packages\matplotlib\backends\backend_agg.py:201: RuntimeWarning: Glyph 49437 missing from current font.
      font.set_text(s, 0, flags=flags)
    C:\Users\bbeee\anaconda3\lib\site-packages\matplotlib\backends\backend_agg.py:201: RuntimeWarning: Glyph 49884 missing from current font.
      font.set_text(s, 0, flags=flags)
    C:\Users\bbeee\anaconda3\lib\site-packages\matplotlib\backends\backend_agg.py:201: RuntimeWarning: Glyph 54665 missing from current font.
      font.set_text(s, 0, flags=flags)
    
     
    In [39]:
    # ์‚ฐ์ ๋„๋กœ ์•Œ์•„๋ณด๊ธฐ
    fig=plt.figure(figsize=[14,14])
    fig.suptitle('Breast Cancer - feature analysis', fontsize=20)
    
    for col in range(cancer.feature_names.shape[0]): # 30 features
        plt.subplot(8,4,col+1)
    #     f_,bins=np.histogram(cancer.data[:,col],bins=50)
    #     plt.hist(malignant[:,col], bins=bins, alpha=0.5, label='malignant', color='red')
    #     plt.hist(benign[:,col], bins=bins, alpha=0.5, label='benign', color='green')
        plt.scatter(cancer.data[:,col], cancer.target, c=cancer.target, alpha=0.4)
        
        
        plt.title(cancer.feature_names[col]+('%d ๋ฒˆ์งธ ์†์„ฑ' % col))
        plt.xticks([])
        plt.yticks([])
    #     if col==0: plt.legend()
    
     
    In [44]:
    plt.scatter(cancer.data[:,0], cancer.data[:,1], c=cancer.target, alpha=0.5)
    
    Out[44]:
    <matplotlib.collections.PathCollection at 0x1cca6fa1c70>
     
    In [51]:
    plt.scatter(cancer.data[:,2], cancer.data[:,3], c=cancer.target, alpha=0.5)
    
    Out[51]:
    <matplotlib.collections.PathCollection at 0x1cca7b88460>
     
    In [52]:
    plt.scatter(cancer.data[:,4], cancer.data[:,5], c=cancer.target, alpha=0.5)
    
    Out[52]:
    <matplotlib.collections.PathCollection at 0x1cca7bc8d90>
     
    In [53]:
    fig,axes = plt.subplots(5,6,figsize=[12,20])
    fig.suptitle('mean radius vs others', fontsize=20)
    
    for i in range(30):
        ax=axes.ravel()[i]
        ax.scatter(cancer.data[:,0],cancer.data[:,i], c=cancer.target, cmap='summer', alpha=0.1)
        ax.set_title(cancer.feature_names[i]+('\n(%d)' % i))
        ax.set_axis_off()
    
     
     

    4 ์ƒ๊ด€๊ณ„์ˆ˜¶

    • ๋ชจ๋“  ์ ์— ๋Œ€ํ•ด์„œ (c1-c1')(c2-c2')์„ ๋‚˜๋ˆ ์ค€ ๊ฐ’์˜ ํ•ฉ์„ ํ‘œ์ค€ํŽธ์ฐจ1,ํ‘œ์ค€ํŽธ์ฐจ2,n์œผ๋กœ ๋‚˜๋ˆ ์ค€๋‹ค.
    • ๋ชจ๋“  ์†์„ฑ์— ๋Œ€ํ•ด์„œ ํ•œ๋ฒˆ์— ๊ทธ๋ž˜ํ”„๋ฅผ ๊ทธ๋ฆด์ˆ˜ ์—†์œผ๋ฏ€๋กœ ์ƒ๊ด€๊ด€๊ณ„๋ฅผ ์ˆ˜์น˜๋ฅผ ํ†ตํ•ด ๋ฐ์ดํ„ฐ๋ฅผ ํŒŒ์•…ํ•œ๋‹ค.
    In [63]:
    # ์—ด๋กœ ์ฝ์œผ๋ฏ€๋กœ Transpose ์‹œ์ผœ์ค˜์•ผ ํ•œ๋‹ค.
    mat=np.corrcoef(cancer.data.T) 
    mat[:,0]
    
    Out[63]:
    array([ 1.        ,  0.32378189,  0.99785528,  0.98735717,  0.17058119,
            0.50612358,  0.67676355,  0.82252852,  0.14774124, -0.31163083,
            0.67909039, -0.09731744,  0.67417162,  0.73586366, -0.22260012,
            0.20599998,  0.19420362,  0.37616896, -0.10432088, -0.04264127,
            0.96953897,  0.29700764,  0.96513651,  0.94108246,  0.11961614,
            0.41346282,  0.52691146,  0.7442142 ,  0.16395333,  0.00706589])
    In [64]:
    # ์†์„ฑ๊ฐ„์˜ ๊ด€๊ณ„๋ฅผ ํ•œ ๋ˆˆ์— ํŒŒ์•…
    fig=plt.figure(figsize=[14,14])
    plt.title('Breast Cancer - Correlation Coefficient',fontsize=20)
    plt.imshow(mat, interpolation='none', vmin=-1, vmax=1)
    plt.colorbar(shrink=0.7)
    plt.xticks(range(30),cancer.feature_names,rotation=90,ha='center')
    plt.yticks(range(30))
    print('')
    
     
     
     

    5 Box plot ์‹œ๊ฐํ™”¶

    In [68]:
    fig=plt.figure(figsize=[10,8])
    plt.title('Cancer - boxplot for features',fontsize=20)
    plt.boxplot(cancer.data)
    plt.xticks(np.arange(30)+1,cancer.feature_names,rotation=90)
    #plt.ylim(0,1) # y์ถ• ๊ธธ์ด๋ฅผ ๋ฐ”๊ฟ”๋ณด์ž
    plt.xlabel('features')
    plt.ylabel('scale')
    print('')
    
     
     
     

    6 ํ‘œ์ค€ํŽธ์ฐจ ์กฐ์ •¶

    In [69]:
    # ์†์„ฑ๋ณ„ ํ‰๊ท 
    m = cancer.data.mean(axis=0)
    
    # ์†์„ฑ๋ณ„ ํ‘œ์ค€ํŽธ์ฐจ
    s = cancer.data.std(axis=0)
    
    # ์ •๊ทœํ™•์ธ ๋ฐ์ดํ„ฐ
    data2 = (cancer.data - m)/s
    
    fig=plt.figure(figsize=[20,15])
    plt.boxplot(data2)
    pass
    
     
    In [70]:
    m1 = cancer.data.max(axis=0)
    m2 = cancer.data.min(axis=0)
    
    data3 = (cancer.data-m2)/(m1-m2)
    
    fig=plt.figure(figsize=[20,15])
    plt.boxplot(data3)
    pass
    
     
    ๋ฐ˜์‘ํ˜•

    '๐Ÿ—๏ธ์†Œํ”„ํŠธ์›จ์–ด > ๐Ÿ’ปpython' ์นดํ…Œ๊ณ ๋ฆฌ์˜ ๋‹ค๋ฅธ ๊ธ€

    No module named 'cv2' ์—๋Ÿฌ ํ•ด๊ฒฐ๋ฐฉ๋ฒ•  (0) 2021.11.13
    tf,idf ๋ฐฉ์‹  (0) 2021.11.12
    [ML] sklearn  (0) 2021.11.04
    [ML] ๋ถ“๊ฝƒ ํ’ˆ์ข… ๋ถ„๋ฅ˜ Story 1  (0) 2021.11.04
    [ML] ๋ถ“๊ฝƒ ํ’ˆ์ข… ๋ถ„๋ฅ˜ Story 2  (0) 2021.11.04
      '๐Ÿ—๏ธ์†Œํ”„ํŠธ์›จ์–ด/๐Ÿ’ปpython' ์นดํ…Œ๊ณ ๋ฆฌ์˜ ๋‹ค๋ฅธ ๊ธ€
      • No module named 'cv2' ์—๋Ÿฌ ํ•ด๊ฒฐ๋ฐฉ๋ฒ•
      • tf,idf ๋ฐฉ์‹
      • [ML] sklearn
      • [ML] ๋ถ“๊ฝƒ ํ’ˆ์ข… ๋ถ„๋ฅ˜ Story 1
      Dev.Op
      Dev.Op
      Interest: CS, Drive

      ํ‹ฐ์Šคํ† ๋ฆฌํˆด๋ฐ”